
Generating Query Substitutions

Rosie Jones, Benjamin Rey and Omid Madani
Yahoo! Research

3333 Empire Avenue
Burbank, CA, 91504, USA

{jonesr,benjamir,madani}@yahoo-inc.com

Wiley Greiner
∗

Los Angeles Software Inc.
1329 Pine Street

Santa Monica, California 90405

w.greiner@lasoft.com

ABSTRACT
We introduce the notion of query substitution, that is, gen-
erating a new query to replace a user’s original search query.
Our technique uses modifications based on typical substitu-
tions web searchers make to their queries. In this way the
new query is strongly related to the original query, contain-
ing terms closely related to all of the original terms. This
contrasts with query expansion through pseudo-relevance
feedback, which is costly and can lead to query drift. This
also contrasts with query relaxation through boolean or TFIDF

retrieval, which reduces the specificity of the query. We de-
fine a scale for evaluating query substitution, and show that
our method performs well at generating new queries related
to the original queries. We build a model for selecting be-
tween candidates, by using a number of features relating the
query-candidate pair, and by fitting the model to human
judgments of relevance of query suggestions. This further
improves the quality of the candidates generated. Experi-
ments show that our techniques significantly increase cover-
age and effectiveness in the setting of sponsored search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Query for-
mulation, Search Process, Retrieval Models

General Terms
Algorithms, Experimentation

Keywords
Query rewriting, query substitution, paraphrasing, spon-
sored search

1. INTRODUCTION
Sometimes a user’s search query may be an imperfect de-

scription of their information need. Even when the infor-
mation need is well described, a search engine or informa-
tion retrieval system may not be able to retrieve documents
matching the query as stated. For example, a user issues
the query “cat cancer”, but all documents in the collection

∗This work was carried out while this author was at Yahoo!
Research

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

use the expression “feline cancer”. Our setting is sponsored
search, in which we attempt to match enormous numbers
of queries to a much smaller corpus of advertiser listings.
Here recall is crucial, as conjunctive search often leads to no
matching results.

Existing solutions to this type of problem include rele-
vance feedback and pseudo-relevance feedback, query term
deletion [11], substituting query terms with related terms
from retrieved documents [19], and Latent Semantic Index-
ing (LSI) [5]. Pseudo-relevance feedback involves submitting
a query for an initial retrieval, processing the resulting docu-
ments, modifying the query by expanding it with additional
terms from the documents retrieved and then performing a
second retrieval with the modified query. Pseudo-relevance
feedback has limitations in effectiveness [17]. It may lead to
query drift, as unrelated terms are added to the query. It is
also computationally expensive. Substituting query terms
with related terms from retrieved documents also relies on
an initial retrieval. Query relaxation or deleting query terms
leads to a loss of specificity from the original query. LSI is
also computationally expensive. In an alternative to auto-
matic query modification or expansion, one could allow the
user to select the appropriate related terms [1]. This allows
for user-aided disambiguation, though also at the cost of an
extra iteration and cognitive load.

We propose query modification based on pre-computed
query and phrase similarity, combined with a ranking of the
proposed queries. Our similar queries and phrases are de-
rived from user query sessions, while our learned models
used for reranking are based on the similarity of the new
query to the original query as well as other indicators. We
are able to generate suggestions for over half of all web search
queries, even after eliminating sensitive queries such as those
containing adult terms. A random sample of query pairs are
labeled for training the models, and we find that the propor-
tion of good suggestions is significant in the sample (even
without any training): 55% of the suggestions in the sam-
ple are labeled as highly relevant. When we apply machine
learning, we improve performance over the baseline signifi-
cantly, improving the detection accuracy for highly relevant
pairs to 79%. We describe the application of our methods to
sponsored search, discuss coverage, and examine the types
of useful suggestions and mistakes that our techniques make.

Others using user query sessions as a source of information
to improve retrieval include Furnas [10], who explicitly asked
users whether their reformulations should be used for index-
ing, and Radlinski and Joachims [15] who use query chains
followed by clicks as a source of relevance ordering infor-

mation. Cucerzan and Brill [4] user query logs for spelling
correction, but do not take advantage of user query refor-
mulations.

Our contributions are: (1) identification of a new source
of data for identifying similar queries and phrases, which is
specific to user search data (2) the definition of a scheme
for scoring query suggestions, which can be used for other
evaluations (3) an algorithm for combining query and phrase
suggestions which finds highly relevant phrases and queries
55% of the time, and broadly relevant phrases and queries
87.5% of the time and (4) identification of features which are
predictive of highly relevant query suggestions, which allow
us to trade-off between precision and recall.

In Section 2 we define the problem, describe our four types
of suggestion quality, and discuss possible query rewriting
tasks and the sponsored search application. In Section 3 we
describe our technique for identifying related phrases (sub-
stitutables) based on user query-rewrite sessions, and the ba-
sic process for generation of candidate query substitutions.
In Section 5 we describe a basic rewriting system, combining
whole-query and phrase-substitutions based on user-session
analysis. We then describe experiments using machine learn-
ing to improve the selection of query rewriting suggestions.
In Section 6 we show that using machine-learned models im-
proves the quality of the top-ranked suggestion, leading to
high quality query substitutions, as measured though human
evaluation. In Section 7 we show that we are able to assign a
reliable confidence score to the query-suggestion pairs, which
allows us to set thresholds and predict the performance of
query suggestions when deployed.

2. PROBLEM STATEMENT
Given a query qi, we wish to generate a modified query

qj which is related to the original query. We will write this:
qi 7→ qj and refer to qj as a suggestion for qi.

There are many ways in which the new query qj could be
related to the original query qi. Some may be improvements
to the original query, others may be neutral, while others
may result in a loss of the original meaning:

• same meaning, different way of expressing it

– spelling change

– synonym substitution (for example colloquial ver-
sus medical terminology)

• change in meaning

– generalization (loss of specificity of original mean-
ing)

– specification (increase of specificity relative to orig-
inal meaning)

– related term

To accommodate and allow quantification of these and
other changes, we define four types of query substitutions.
We place these on a scale of 1 to 4, with the most related
suggestions assigned a score of 1, and the least related as-
signed a score of 4. Examples of these are shown in Table
1, and we define these classes below.

2.1 Classes of Suggestion Relevance

1. Precise rewriting: the rewritten form of the query
matches the user’s intent; it preserves the core mean-
ing of the original query while allowing for extremely

minor variations in connotation or scope. Although
the two forms may differ syntactically, in most cases,
the rewriting process should be completely transpar-
ent to the user.
E.g.: automobile insurance 7→ automotive insurance

2. Approximate rewriting: the rewritten form of the
query has a direct close relationship to the topic de-
scribed by the initial query, but the scope has nar-
rowed or broadened or there has been a slight shift to
a closely related topic.
E.g.: apple music player 7→ ipod shuffle

3. Possible rewriting: the rewritten form either has
some categorical relationship to the initial query (i.e.
the two are in the same broad category of products
or services, including close substitutes and alternative
brands) or describes a complementary product, but is
otherwise distinct from the original user intent.
E.g.: eye-glasses 7→ contact lenses,
orlando bloom 7→ johnny depp

4. Clear Mismatch: the rewritten form has no clear
relationship to the intent of the original query, or is
nonsensical. E.g.: jaguar xj6 7→ os x jaguar

2.2 Tasks
Depending on the task, different classes of rewriting may

be acceptable.

• Specific Rewriting (1+2) If the goal is to have a
closely related query, in order to retrieve new highly
relevant results, only the 1s and 2s are acceptable.
Here we will measure performance in terms of the pro-
portion of {1,2}. We will refer to this as “specific
rewriting” or “1+2”.

• Broad Rewriting (1+2+3) If the goal is to perform
re-ranking of results retrieved with the initial query,
(akin to relevance feedback), rewritings from classes 1,
2 and 3 may all be useful. Similarly all three classes
may be useful if we wish to perform query expansion
using the rewritten query. In addition, if the task is to
find results relevant to the interests of the user, with
the query as our indication of user interests, class 3
may be of interest too. Under all these conditions, we
will measure our performance in terms of the propor-
tion of query suggestions in classes {1,2,3}. We will
refer to this as “broad rewriting” or “1+2+3”.

2.3 Query rewriting for sponsored search
In sponsored search [8], paid advertisements relevant to a

user’s search query are shown above or along-side algorith-
mic search results. The placement of these advertisements
is generally related to some function of the relevance to the
query and the advertiser’s bid.

While in general web search there are often many docu-
ments containing all of the user’s search terms, this is not
always true for sponsored search. The set of advertiser re-
sults is much smaller than the set of all possible web pages.
For this reason, we can think of sponsored search as infor-
mation retrieval over a small corpus, where in many cases a
conjunctive match on all query terms will not give a result.
In this setting, the ability to modify a user’s query (which

Class Score Examples
Precise 1 automotive insurance 7→ automobile insurance
rewriting corvette car 7→ chevrolet corvette

apple music player 7→ apple ipod
apple music player 7→ ipod
cat cancer 7→ feline cancer
help with math homework 7→ math homework help

Approximate 2 apple music player 7→ ipod shuffle
rewriting personal computer 7→ compaq computer

hybrid car 7→ toyota prius
aeron chair 7→ office furniture

Possible 3 onkyo speaker system 7→ yamaha speaker system
rewriting eye-glasses 7→ contact lenses

orlando bloom 7→ johnny depp
cow 7→ pig
ibm thinkpad 7→ laptop bag

Clear 4 jaguar xj6 7→ os x jaguar
mismatch time magazine 7→ time and date magazine

Table 1: Example queries and query-suggestions for each of the four classes.

may have no sponsored results) to a closely related query
(which does have results) has extremely high utility.

Sponsored search has a few interesting constraints that we
briefly touch on. The primary constraint is that we have a
finite set of possible rewritings: the set of phrases for which
we can return an advertisement. On one hand, this increases
the difficulty of the task in terms of coverage, because even if
we find a good rewriting for the initial query, it won’t neces-
sarily be found in an advertiser’s listing. On the other hand,
the constraint acts as a basic (language model) filter. If the
rewritten form of the query is available for sponsored search,
it is more likely to be meaningful. Thus this constraint can
help filter out nonsensical rewritings (E.g.: air jordan iv
retro 7→ jordan intravenous 50s). Another constraint relates
to the classes of queries we can modify. For example, we
avoid generating suggestions for sensitive queries such as
those containing adult terms.

We expect that the work we present here is relevant to
other applications of query rewriting, such as for general
web retrieval.

3. SUBSTITUTABLES
Given an initial search query qi, we wish to generate rele-

vant queries qj . We can do this either by replacing the query
as a whole, or by substituting constituent phrases, as shown
schematically in Figure 1.

Thus we would like to have a source of similar queries, and
similar phrases. While we could use static sources such as
WordNet [9] to identify similar phrases, in general this will
not allow us to generate suggestions for new concepts such
as products, movies and current affairs that arise in query
streams. Another possibility is to use within-document cooc-
currence statistics to find related phrases, as these have been
found useful for finding query-relevant terms [19]. One could
also use anchor text, which has been found useful for gen-
erating query refinements [12]. For using data as close as
possible to our target task, however, we chose to work with
user-sessions from search query logs. Previous work has
shown these sessions to contain around 50% reformulations
[11, 18]. In these query-session reformulations, a user mod-
ifies a query to another closely related query, through word

catholic names
baby names

.

..

...

(christian) (baby names)
(religious) (baby names)

(christian) (baby boy names)
(religious) (baby boy names)

(catholic) (baby names)

catholic baby names

(catholic) (baby boy names)
(catholic) (unique baby names)

Figure 1: We generate multiple candidates Q’ for
query rewriting by both substituting for the whole
query atomically, and by breaking it into phrases
and generating substitutions for each phrase.

insertions, deletions and substitutions, as well as re-phrasing
of the original query.

3.1 Definition of Query Pair
The data used comes from logs of user web accesses. This

data contains web searches annotated with user ID and
timestamp. A candidate reformulation is a pair of successive
queries issued by a single user on a single day. Candidate
reformulations will also be referred to as query pairs.

candidateQueryPairs(useri, dayj) = {< q1, q2 >: (q1 6= q2) ∧

∃t : queryt(useri, q1) ∧ queryt+1(useri, q2)}

We collapse repeated searches for the same terms, as well as
query pair sequences repeated by the same user on the same
day. We then aggregate over users, so the data for a single
day consists of all candidate reformulations for all users for
that day.

3.2 Phrase Substitutions
Whole queries tend to consist of several concepts together,

for example “(new york) (maps)” or “(britney spears) (mp3s)”.
Using phrases identified by high point-wise mutual informa-
tion, we segment queries into phrases (where a single word

can be a phrase), and find query pairs in which only one seg-
ment has changed. For example, the query pair : (britney
spears) (mp3s) → (britney spears) (lyrics) gives us both an
instance of a whole query pair, as well as the pair: mp3s →
lyrics.We then identify this pair of phrases as a candidate
phrase pair.

Note that the point-wise mutual information measure we
use to identify phrases looks for adjacent terms whose mu-
tual information is above a threshold:

P (α, β)

P (α), P (β)
> κ

where we set the threshold κ to be 8. We also experi-
mented with the connexity approach to identifying phrases
[16], and found that our methods are not sensitive to the
approach used to identify phrases.

3.3 Identifying Significant Query Pairs and
Phrase Pairs

In order to distinguish related query and phrase pairs from
candidate pairs that are unrelated, we use the pair indepen-
dence hypothesis likelihood ratio. This metric tests the hy-
pothesis that the probability of term q2 is the same whether
term q1 has been seen or not, by calculating the likelihood
of the observed data under a binomial distribution using
probabilities derived using each hypothesis [7, 13].

H1 : P (q2|q1) = p = P (q2|¬q1)

H2 : P (q2|q1) = p1 6= p2 = P (q2|¬q1),

The likelihood score is

λ =
L(H1)

L(H2)

The test statistic −2 log λ is asymptotically χ2 distributed.
Therefore we work with the log likelihood ratio score:

LLR = −2 log λ = −2 log
L(H1)

L(H2)

A high value for the likelihood ratio suggests that there is a
strong dependence between term q1 and term q2. In Table 2
we show examples of phrases with high likelihood ratios for
the phrase or query “dog”. We observe that many semantic
relationships are captured in these highly correlated queries
and terms. We refer to query pairs and phrase pairs above
a threshold for the LLR score as substitutables. In related
work we are evaluating these related terms for performance
on standard semantic similarity tests. We will see in Section
6 that they perform well for generating similar queries.

Because of the χ2 distribution of λ, a score of 3.84 for
LLR gives us a 95% confidence that we can reject the null
hypthesis, and two phrases are statistically significantly re-
lated. However, this will give us 1 in 20 spurious relation-
ships. As we are dealing with millions of phrases, we set
the threshold on LLR much higher, generally to above 100,
based on observation of the substitutable pairs.

3.4 Generating Candidates
We seek to generate statistically significant related queries

for arbitrary input queries. For frequent queries, we have
dozens of such related queries. But for less frequent queries,
we may not have seen sufficiently many instances of them to

dog → dogs 9185 (pluralization)
dog → cat 5942 (both instances of ’pet’)
dog → dog breeds 5567 (generalization)
dog → dog pictures 5292 (more specific)
dog → 80 2420 (random junk or noise)
dog → pets 1719 (generalization – hypernym)
dog → puppy 1553 (specification – hyponym)
dog → dog picture 1416 (more specific)
dog → animals 1363 (generalization – hypernym)
dog → pet 920 (generalization – hypernym)

Table 2: Terms and queries which can be substituted
for the term or query “dog”, along with likelihood
ratios, based on user query rewriting sessions. The
semantic relationship is shown for explanatory pur-
poses only.

have any statistically significant related queries. We can’t
ignore infrequent queries: infrequent: the power-law (Zipf)
distribution of query terms leads to a large proportion of
rare queries.

In the same way as we generated the phrase-substitutables,
we can break up the input query into segments, and replace
one or several segments by statistically significant related
segments. This will help cover the infrequent queries. Fig-
ure 1 shows a schematic of the approach we take:

• generate m candidate whole-query substitutions qi 7→
qi1 , qi2 ..qim

• segment query into phrases p1..pn

• for each phrase pi

– generate k phrase-substitutions pi 7→ pi1 , pi2 ..pik

– generate new query from a combination of original
phrases and new phrases: qi 7→ p1..p

′

j ..pn

This gives us a set of query-substitution candidates which
we will denote Q′.

As an example, consider the query “catholic baby names”.
We can find whole-query substitutions from our query sub-
stitutables, such as “catholic names”. We can also segment
the query into the two phrases “catholic” and “baby names”,
and find substitutions for these phrases (see Figure 1).

4. EXPERIMENTAL METHOD
We will compare a variety of methods for generating query

substitutions. Our evaluation will consider only the query
suggestion, i.e., given a randomly sampled query qi, we will
assess the quality of the query substitution qj we suggest.
We do not assess end-to-end retrieval performance.

For each evaluation, we use a random sample of 1000 ini-
tial queries qi sampled from query logs from a disjoint time
period to our substitutables query data, and generate a sin-
gle suggestion qj for each. We will evaluate the accuracy
of approaches to choosing the suggestion to generate, by re-
porting the proportion of suggestions falling into the classes
precise (class 1+2) and broad (class 3+4).

To assess whether there are properties of the suggestions
which are predictive of good quality, we will train a machine-
learned classifier on the labeled < query, query−suggestions >

pairs. We will then evaluate our ability to produce sugges-
tions of higher quality for fewer queries, by plotting precision-
recall curves.

5. AUTOMATIC ASSESSMENT OF SUBSTI-
TUTION QUALITY

Whole query substitutions and many of the possible com-
binations of substituted phrase segments yield hundreds of
candidates for common queries. Only a few are good, and
we need to assess and predict quality as well as rank.

We first describe two simple methods for ranking can-
didates. In order to develop a more sophisticated ranking
scheme, we take the top suggestion from one of these ranking
schemes and use machine learning and human judgements
to learn a model of high quality suggestions. We describe
how we use the learned classifier to learn a more accurate
re-ranking of candidate suggestions in Section 6.2.

5.1 Basic Query Substitution Ranking Algo-
rithms

5.1.1 Random Ranking Algorithm
Our baseline candidate selection method is randomRank:

1. Set the maximum number of whole query alternatives
m to 10

2. Segment the query, and assign number of alternatives
per phrase, k, as a function of the number of con-
stituent phrases n:

• if (n > 5) k = 5

• else k = 10

For randomRank we require all whole query and phrase
suggestions to have an LLR score of at least 50. We set
the threshold lower than the value of 100 we have empiri-
cally observed to be a useful setting, in order to assess the
performance of suggestions over a range of LLR scores.

We sample one query uniformly at random from this sam-
ple. Note that we are much more likely to select a phrase-
substitution than a whole query substitution: for a query
with two phrases, there are up to 11 × 11 − 1 = 120 new
queries generated by phrase substitution, and only 10 gen-
erated by whole-query substitution.

5.1.2 Substitution Type and Log-likelihood Ratio Score
We designed our next method, LLRNumSubst, using the

following intuitions, based on our experience with samples
of the generated candidates:

1. First try whole-query suggestions ranked by LLR score

2. then try suggestions which change a single phrase,
ranked by the phrase substitution LLR score

3. then try suggestions which change two phrases, or-
dered by the LLR scores of the two phrases

4. ...

For more efficient processing of candidates, we constrain the
number of suggestions by limiting suggestions per phrase as
shown in Table 3. Very long queries seldom have a sponsored
search result and we did not attempt to generate candidates
for them. We require all query and phrase suggestions to
have an LLR score of at least 100.

Num. phrases Max. suggestions / phrase
1 99
2 9
3 2

4,5 1
6+ 0

Table 3: For the LLRNumSubst ranking approach
to generating suggestions, limits on suggestions per
phrase are applied, depending on the number of
phrases in the query. The goal is to keep the to-
tal number of suggested queries around 100.

5.2 Query Substitution with Machine Learn-
ing

Rather than making assumptions about what makes a
good substitution, we can treat our problem as a machine
learning problem. The target to learn is the quality of the
substitution, and we provide features that we expect to be
reasonably efficiently computable. We tried both linear re-
gression and binary classification approaches. For classifica-
tion, we learn a binary classifier over query pairs:

g(qi, qj) 7→ {+1,−1} (1)

We evaluate on two binary classification tasks, as specified
in Section 2.2:

• broad (classes 1+2+3) for which the negative class
will be rewritings labeled 4

• specific (classes 1+2) for which the negative class
will be rewritings labeled 3+4.

5.2.1 Labeled Data
Our training data was a sample comprised of the top-

ranked suggestion for each of 1000 queries, where the top-
ranked suggestion was generated using the LLRNumSubst
ranking scheme described Section 5.1.2. While using random
suggestions from the randomRank scheme as training data
would lead to a more general model, using LLRNumSubst
suggestions allows us to pre-filter for high-likelihood sugges-
tions, and then learn a ranking among them. We had the
pairs < q1, q2 > of query and suggestion manually labeled
on the scale of 1 to 4 as described in Section 2.

5.2.2 Features
We generated 37 features for each initial and rewritten

query pair (q1, q2). These features were of 3 types:

• Characteristics of original and substituted query in iso-
lation: length, number of segments, proportion of al-
phabetic characters.

• Syntactic substitution characteristics: Levenshtein edit
distance, number of segments substituted, number of
tokens in common, number of tokens specific to q1, to
q2, size of prefix overlapping, stemming relationship.

• Substitution statistics: LLR, frequency, p(q2|q1), mu-
tual information. Where multiple phrases were substi-
tuted in a single query, these features were computed
for the both the minimum and the maximum.

A complete list of these features is shown in Table 4.

Feature Description

length number of characters (q1)
nLetters number of letters (a-zA-z) in q1
nTokens number of words in q1
tok1 number of words only in q1
tok2 number of words only in q2
nPhrases1 number of phrases in q1
nPhrases2 number of phrases in q2
sponsoredResults q1 has a sponsored result

numSubst*** number of phrases substituted
tok12 number of words in common
Word edit-dist*** proportion of words changed
nPhrasesDiff nPhrases1!=nPhrases2
distr*** normalized edit distance
dist edit distance
possibleStem is q2 a stem of q1
prefixOverlap num. prefix characters overlapping

LLR1min min(LLR(pi 7→ pj))

LLR2min min(LLR(pj 7→ pi))

freq1min min(freq(pi 7→ pj))

freq2min min(freq(pj 7→ pi))

f1divf2min (freq1min + 0.5) / (freq2min + 0.5)
dp1min smallest deletion probability in q1
dp2min smallest deletion probability in q2
prP2givenP1min min(p(pi 7→ pj))

prP1givenP2min*** min(p(pj 7→ pi))

mutInfmin min(MI(pi, pj))

LLR1max max(LLR(pi, pj))

LLR2max max(LLR(pj , pi))

freq1max max(freq(pi 7→ pj))

freq2max max(freq(pj 7→ pi))

f1divf2max (freq1max + 0.5) / (freq2max + 0.5)
dp1max max deletion probability in q1
dp2max max deletion probability in q2
pu2givenu1max max(p(pi 7→ pj))

pu1givenu2max*** max(p(pj 7→ pi))

mutInfmax max(MI(pi, pj))
Q

i p(ui 7→ u′

i
)

Table 4: Features considered for query rewriting.
Those marked with ‘***’ were significant at the
0.001 level.

5.2.3 Linear Regression
We used the original labels {1, 2, 3, 4} and performed

standard linear regression. The forward-backward stepwise
process reduced the number of features from 37 to 20. We
kept only the features with p-value smaller than 5 × 10−4

plus number of substitutions and experimented with different
combinations. The simplest best fit was obtained with the
following features:

• Word distance: prefer suggestions with more words in
common with the initial query

• Normalized edit distance: prefer suggestions with more
letters in common with the initial query

• Number of substitutions: prefer whole query sugges-
tions over phrase suggesions, prefer fewer phrases changed.

It is interesting to note that none of the features relating to
the substitution statistics appeared in the best models. This
may be due to the fact that the training query suggestions
were selected using the LLRNumSubst method which takes
LLR score into account. The ranking function we learn is
shown in Equation 2.

f(q1, q2) = 0.74 + 1.88 editDist(q1, q2)

+ 0.71 wordDist(q1, q2)

+ 0.36 numSubst(q1, q2) (2)

We can interpret this model as saying that, given that
a suggestion is among the top ranked suggestions accord-
ing to the LLRNumSubst ranking, we should prefer query
substitutions with small edit distance (perhaps spelling and
morphological changes) and with small word edit distances
(perhaps word insertions or deletions). We should prefer
whole-query suggestions, and if we substitute at the phrase
segment level, the fewer the substitutions the better.

5.2.4 Classification Algorithms
We experimented with a variety of machine learning al-

gorithms to assess performance achievable and the utility of
the overall feature set. We experimented with linear support
vector machines (SVMs) [3] allowing the classifier to choose
its own regularization parameter from a fixed set (using por-
tion of training data only), and decision trees (DTs). For
the SVM, we normalized features by dividing by the max-
imum magnitude of the feature, so all features were in the
range [-1,1]. For tree induction, no pruning was performed,
and each feature was treated as numeric. Bags of 100s of
decision trees performed best, under a number of perfor-
mance measures. On the task of distinguishing {1+2} from
{3+4} (baseline of 66% positive using data generated with
LLRNumSubst described in Section 5.1.2), the zero-one
error using such committees of trees was just above 0.21
(40 10-fold cross-validation trials). Note that the error rate
of baseline (majority classifier) is 0.34. For other more re-
stricted classifiers such as linear SVMs and single trees we
obtained error rates of around 0.24. The following single tree
of depth only two, induced by treating features as boolean
(zero or nonzero), was sufficient to obtain this level of zero-
one performance.

If (number of tokens in common is nonZero)

then {1+2}

else if (prefix overlap is nonZero)

then {1+2}

else

{3+4}

end

end

We can interpret this model as saying that a suggestion
should ideally contain some words from the initial query,
otherwise, the modifications should not be made at the be-
ginning of the query.

6. RESULTS
For all learning algorithms we report on, we performed

100 random 90-10 train-test splits on the labeled data set,
and accumulated the scores and true labels on the hold-out
instances. We plot the precision-recall curve to examine the
trade-off between precision and recall. The F1 score is the
harmonic mean of precision and recall: F1 = 2PR

P+R
, and Max-

F refers to the maximum F1 score along the precision-recall
curve. The breakeven point (BP) is the precision at the
point where the precision and recall are equal (or closest).
Finally, average precision is the average of precision scores
at every recall point. It serves as a useful summary statis-
tic capturing performance across the entire precision-recall
curve.

6.1 Results of Regression and Classification
Figure 2 shows that the precision recall curves for four

learning algorithms: SVM, linear (regression) model, 2 level
decision tree, and bag of decision trees. Interestingly, they
all converge around precision of 76% and recall of 92%,
which appears also to be their max-F point. They have
roughly the same max-F measure (83-84% - see Table 5).
The shape of the curve is different for each model. The
2 level decision tree does not perform well overall. As the
decision tree splits the possible scores into only 3 regions,

Figure 2: Precision - recall for linear model, 2 levels
DT, bag of 100 DTs, SVM

BP max-F average precision
2 level DT 0.71 0.83 0.71
bag of 100 DTs 0.83 0.84 0.88
SVM 0.81 0.83 0.86
linear model 0.80 0.84 0.87
baseline 0.66 0.66 0.66

Table 5: break even point - average precision - max-
F for 2 levels DT, bag of 100 DTs, SVM, linear
model

the precision recall curve is not convex. The linear regres-
sion model, using only 3 features, has the best precision for
low levels of recall, but the bag of decision tree is better
for recall between 40 and 90%. Overall, the bag of decision
trees performs the best under a number of performance mea-
sures (zero-one accuracy and curve related measures such as
precision-recall breakeven-point, average precision, and area
under ROC curve, as shown in Table 5.)

We would like to apply one of these models for selecting
the suggestion for an initial query from the pool of possible
candidates, Q’. For our subsequent experiments we exper-
imented with the linear regression model for its execution
time efficiency, as it only requires three easy to compute
features.

6.2 Precision of Top-ranked Suggestion
We will now turn our attention from the binary classifica-

tion of pre-selected query pairs, to the ranking of multiple
candidate suggestions Q’ for a single input query. We have
the two ranking schemes (1) randomRank and (2) LLR-
NumSubst described in Sections 5.1.1 and 5.1.2. We also
have the linear model given in Equation 2, which was trained
on queries generated with LLRNumSubst. We use this
linear model to score and re-rank suggestions produced by
LLRNumSubst on a new set of 1,000 randomly selected
queries, and take the top-ranked suggestion as the candi-
date. We refer to this algorithm as the linear model, or (3)
NumSubstEdit.

We can now compare the precision of the top-ranked sug-
gestion of these three ranking schemes. Note that each was
used to generate suggestions for a distinct sample of 1,000
queries. In Table 6 we see that the substitutables are an ex-
cellent source of related terms: the baseline random ranking
achieved precision of 55% on the specific rewriting task of
identifying highly relevant suggestions for queries. The LL-
RNumSubst algorithm improved the performance to 66%,

Ranking Scheme {1+2} {1 + 2 + 3}
random 55% -
LLR 6% 87.5%
numSubstEdit 74% 87.5%

Table 6: Precision of top-ranked suggestion for
each ranking scheme for precise (1+2) and broad
(1+2+3) rewriting.

while NumSubstEdit’s re-ranking of a separate sample of
LLRNumSubst candidates increased precision of the top
suggestion to 74%.

For generating a suggestion for broad rewriting, which
allows suggestions from each of classes {1,2,3} LLRNum-
Subst generates an appropriate top-ranked suggestion for
87.5% of a sample of 1000 queries. Our source of data, the
substitutables, is by construction a source of terms that web
searchers substitute for one another, leading to a large pro-
portion of broadly related suggestions. Re-ranking LLR-
NumSubst’s candidate suggestions with NumSubstEdit
does not result in increased precision of the top-ranked can-
didate for broad rewriting.

6.3 Coverage
We are not able to generate suggestions for all queries for

several reasons:

• Data sparseness: for many queries, we have seen too
few instances to have statistically significant whole
query or phrase substitution instances.

• Sponsored search setting: we are constrained to gen-
erating suggestions for which we have an advertiser.

• Risk averse algorithm design: we eschew generating
suggestions for adult queries (around 5% of the input
query sample), and for other sensitive terms.

• Novelty constraint: we reject suggestions which are
deemed to be identical to the original query by a base-
line normalization procedure.

Under these constraints, our methods (e.g., Random Se-
lection of Section 5.1.1) yield at least one suggestion for
about 50% of queries.

When we break down the coverage by query decile we
see that the coverage varies by decile. Decile 1 contains
the queries constituting the top 10% of query volume, while
decile 10 contains the most infrequent queries, most of which
have a search frequency of only 1 in the sampled time-period.
The histogram shown in Figure 3 was generated by using
the NumSubstEdit method to select a candidate. We see
that our method allows generation of suggestions for both
frequent and infrequent queries.

We generate a suggestion for more than 10% of queries
from decile 10, many of which would typically have no spon-
sored search result. This incremental coverage is primarily
due to phrase substitution: for the frequent queries, we were
able to find whole query substitutions, but for the less fre-
quent ones, only breaking the query into phrase segments
allowed us to generate a result.

Examples of queries with a low monthly query frequency
for which we changed 1 or 2 units:

new testament passages 7→ bible quotes
cheap motels manhattan, ny 7→ cheap hotels manhattan, ny

Figure 3: Coverage per decile, per type of substitu-
tion

7. CONFIDENCE MODEL
For each query suggestion generated by our algorithm, we

would like to associate a probability of correctness (confi-
dence score). For example, for the query pair 1943 nickel

7→ 1943 dime, our numSubstEdit linear model assigned
the score 2.27, which we can interpret as close to a precise
match (1+2). To convert this to a probability we could nor-
malize by shifting and scaling, setting the linear model score
1 to a probability of correctness of 1, and the linear model
score 4 to a probability of correctness of 0. This would give a
probability of correctness to this example of 58%. Depend-
ing on the distribution of scores, we may be able to give
more reliable confidence estimates than this. In this section
we describe our experiments on turning the output of the
linear model into confidence scores.

7.1 Evaluating Confidence Models
We evaluate our confidence models by comparing them to

the true binary (0,1) label. If a query pair was labeled 1 or
2 by our human labelers, the ideal confidence model would
say the pair is correct with probability 1. In this case we
will say the true probability of correctness ptrue is 1. If the
query pair was labeled 3 or 4 by our human labelers, the
ideal confidence model would say the pair is correct with
probability 0. In this case we will say the true probability
of correctness ptrue is 0.

We evaluate our confidence models using root-mean squared
error (RMSE):

RMSE =

s

P

(pmodel − ptrue)
2

n

where n is the number of query pairs we test the model on.
We also evaluate log-loss, which uses the log of a linear loss
function.

7.2 Baseline Confidence Models
Our uniform model assumes the probability is the same

for all suggestions: the overall precision of the model (0.73).
Shift and scale (SS) is the simple monotonic transforma-
tion which maps the score onto a [0,1] scale by subtracting
the minimum score and dividing by [max - min].

7.3 Comparison of Confidence Estimation Tech-
niques

We experimented with several well known techniques for
transforming a score into a probability, and evaluated their

Uniform SS Sigm Iso ADist
RMSE 44.4% 41.7% 40.7% 40.8% 41.2%
LogLoss 84.1% 76.3% 73.3% 74.6% 74.9%

Table 7: Error at estimating the probability of cor-
rectness for query suggestions, by fitting a function
from the linear model score to an estimate of the
probability of correctness.

RMSE and Log-Loss on 100 80-20 train-test splits. Results
are shown in Table 7.

Isotonic regression [6] (Iso) performs well, but tends to
overfit1. Fitting an asymmetric distribution [2] (ADist) is
a promising technique in general, but for our task no true
distribution could model well the {3 + 4} class and thus the
performance was not as good as with the other techniques.
The best results were obtained with a sigmoid [14] (SS). The
sigmoid also has the advantage of being a simple model to
implement.

Consequently, we used the sigmoid to model the proba-
bility function:

P (label(qi, qj) = {1, 2}|f) =
1

1 + exp(1.85 f(qi, qj) − 4.9)

7.4 Threshold Model
For different applications of our query-suggestion algo-

rithm, we may want to ensure that the average precision will
be higher than a given threshold. This differs from the confi-
dence model, in that we consider a set of <query,suggestion>

pairs, and not just one <query,suggestion> pair. For a set
of pairs, if we accept only the suggestions with a confidence
higher than a given threshold, then the average precision of
the set is at least as high as the precision at the threshold
itself, and will probably be significantly higher.

We could directly rely on the observed data, and for each
value of the threshold, count how many times suggestions
with a score higher than this threshold were correct. A
drawback of this approach is that for high thresholds, we will
have very little data with which to estimate the precision.
This can be observed on the graph of the estimated precision
for given thresholds in Figure 4. The confidence interval
increases with the threshold, and with a high threshold, we
are not able to give a reliable estimate.

We have a probability model, and we can take advantage
of it using the following integration. For a set of query trans-
formations Qt, if we accept only those with a probability of
correctness Pc greater than T , the average precision will be:

Precision(Qt|Pc(class(qti) = {1 + 2}) > T) =
R 1

x=sigm−1(T)
sigm(x)dp(x)

R 1

x=sigm−1(T)
dp(x)

where sigm is the transformation of the sigmoid of the confi-
dence model and p(x) is given by the histogram of the score.
The model fits the observed data quite well, up to a thresh-
old of 80%. After that, it seems conservative. This may be
useful as it prevents us from creating an algorithm which
promises 100% precision and delivers only 90% precision.

1The variance of the RMSE across different cross validation
runs was much higher than for other techniques.

Figure 4: Average precision as a function of a
threshold on the confidence of individual query sug-
gestions.

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50

A
ve

ra
ge

 P
re

ci
si

on

Coverage

Figure 5: Precision Coverage trade-off

Still it is odd that we have an under-confident estimate.
This is due to the fact that the true model of the probability
is not sigmoid-shaped for high scores. When we replace the
flattening part of the sigmoid with a line ramping up faster
than the sigmoid, we have better results as measured with
RMSE. Nevertheless, since we have few datapoints with
high scores, it is safer to assume that the probability for
high scores is flattening. We can integrate to get the as-
sociated confidence threshold. For instance, if we want to
ensure an average precision of 75%, we need to reject any
rewriting with a confidence lower than 17%. If we want to
ensure an average precision of 85%, we need to refuse any
rewriting with a confidence lower than 76%.

In Section 6 we looked at precision-recall curves. We now
take into account both the incomplete coverage, the con-
tinuous score of the linear model and the threshold model
transformation. This allows us to tune for more or less cov-
erage and predict the expected average precision. As we can
see in Figure 5, we can have, for example:
- precision: 90% coverage 7%
- precision: 80% coverage 42%
- precision: 75% coverage 49%

7.5 Examples of Estimated Relevance Scores
Using the NumSubstEdit linear model with sigmoid

normalization, we have observed that substitution types in
order of decreasing confidence tend to be spelling variants,
then query expansion and relaxation, then synonyms and
related terms, and finally approximate matching with ev-
ery word changed. In Table 8 we see example queries along
with their suggestions, and the relevance score assigned by
our model.

8. DISCUSSION

Initial query Rewritten query label P̂

anne klien watches anne klein watches 1 92%

sea world san diego sea world san diego tickets 2 90%

restaurants in restaurants in
washington dc washington 2 89%

boat insurance cost? boat insurance price 1 79%

nash county wilson county 3 66%

frank sinatra elvis presley
birth certificate birth 4 17%

ampland google 4 22%

Table 8: Example queries with the suggestions gen-
erated by our algorithm, along with manually as-
signed labels (1=close rewriting, 4=bad rewriting)
and the estimated probability of relevance assigned
by our confidence model.

meaning of dreams 7→ interpretation of dreams (synonym)
furniture etegere 7→ furniture etagere (spelling correction)
venetian hotel 7→ venetian hotel las vegas (expansion)
delta employment credit union 7→ decu (acronym)
lyrics finder 7→ mp3 finder (related term)
national car rental 7→ alamo car rental (related brand)
amanda peet 7→ saving silverman (actress in)

Table 9: Example specific and broad suggestions
generated by NumSubstEdit. Many semantic re-
lationships are found in the rewritings (shown here
for illustrative purposes only).

The NumSubstEdit algorithm prefers suggestions with
small edit distance and few words changed. This is often
effective for identifying specific (1+2) suggestions, as we
showed in Section 6.2, but also generates broad rewrit-
ings. Examples of both are shown in Table 9.

One of the causes of the broader suggestions is our ap-
proach to identifying possible phrase substitutions. Very
general contexts can lead to broad types of substitutions:
(britney spears) (mp3s) → (christina aguilera) (lyrics) gives
us the phrase pair: britney spears→ christina aguilera.
We are investigating methods for detecting very broad changes,
such as considering the entropy of the rewrites found in a
given context.

While we showed in Section 6.3 that coverage varies across
deciles, the precision of suggestions is generally constant
across deciles. However, there are still differences between
the suggestions we generate for frequent and infrequent queries.
We tend to generate more spelling variants for the infre-
quent queries: we see 0% spelling change for initial queries
in decile 1, and 14% for decile 10. The reason may simply be
that infrequent queries are much more likely to contain mis-
spellings, and spelling corrections are the easiest suggestions
to generate.

Even with an excellent source of related terms such as the
substitutables, we occasionally generate poor suggestions.
We have observed that these errors are frequently produced
because of polysemy: some terms are good substitutes for
each other in one context, but not in another. For instance,
while software is related to system in the context of computer
science, it is not in the context of the term “aerobic”. We
generated the poor suggestion:

aerobic system 7→ aerobic software

Another problem which occurs frequently is in the rewriting
of people’s names. Two similar first names could possibly
be used to refer to the same person, but if given with a last
name, they are not equivalent anymore. For instance:

andre wilson 7→ andrew wilson (different person)

Another source of mistakes is when the relationship between
the initial term and its substitute exists, but is too weak.
Then the substitution provokes a shift that is too distant in
the meaning from the initial query. For instance:

craig’s list 7→ monster

Both are popular queries, certainly likely issued often in
the same sessions, but it is unlikely that a user’s specific
search need when searching for one is satisfied by serving
results for the other.

Overall our query substitution technique is extremely effi-
cient, especially in comparison to retrieval-based techniques
such as pseudo-relevance feedback, and matrix multiplica-
tion methods such as LSI. For whole-query suggestions, we
are able to precompute the query substitutions and their
scores offline, and so at run-time we require just a look-up.
For phrase substitutions, we precompute edit distance be-
tween phrases offline, so when we look-up substitutions for
each phrase at run-time, we require linear normalization of
the edit-distance score, as well as computing the linear score
with multiplications and additions.

9. CONCLUSIONS AND FUTURE WORK
We have shown that we are able to generate highly rel-

evant query substitutions. Further work includes building
a semantic classifier, to predict the semantic class of the
rewriting. With such a classifier we would be able to fo-
cus on the targeted subtypes of rewriting, such as spelling
variants, synonyms, or topically related terms.

To improve our algorithm, we can also take inspiration
from machine translation techniques. Query rewriting can
be viewed as a machine translation problem, where the source
language is the language of user search queries, and the tar-
get language is the language of the application (for instance
advertiser language in the case of sponsored search).

In order to generalize our work to any application, we also
need to work on introducing a language model, so that in
the absence of filtering with the list of sponsored queries,
we avoid producing nonsensical queries. In addition, with
the algorithm in operation we could learn a new ranking
function using click information for labels.

10. ACKNOWLEDGEMENTS
Thanks to Tina Krueger and Charity Rieck for work on

the evaluation, to Paul Bennett for helpful discussions, and
to the anonymous reviewers for helpful comments.

11. REFERENCES

[1] P. Anick. Using terminological feedback for web search
refinement - a log-based study. In Proceedings of the
Twenty-Sixth Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR-2003), 2003.

[2] P. N. Bennett. Using asymmetric distributions to improve
text classifier probability estimates. In SIGIR ’03:
Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 111–118, New York, NY, USA, 2003. ACM
Press.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for
Support Vector Machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[4] S. Cucerzan and E. Brill. Spelling correction as an iterative
process that exploits the collective knowledge of web users.
In Proceedings of EMNLP 2004, pages 293–300, 2004.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic
analysis. Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[6] L. Dumbgen. Pair-adjacent violators (PAV), available at
http://www.math.mu-luebeck.de/workers/
duembgen/software/software.html. In Statistical Software
(MATLAB), 2000.

[7] T. E. Dunning. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74, 1993.

[8] D. C. Fain and J. O. Pedersen. Sponsored search. In
Bulletin of the American Society for Information Science
and Technology, 2005.

[9] C. Fellbaum. WordNet: An Electronic Lexical Database.
The MIT Press, 1998.

[10] G. W. Furnas. Experience with an adaptive indexing
scheme. In CHI ’85: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 131–135, New York, NY, USA, 1985. ACM Press.

[11] R. Jones and D. C. Fain. Query word deletion prediction.
In Proceedings of the Twenty-Sixth Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR-2003), pages 435–436, 2003.

[12] R. Kraft and J. Zien. Mining anchor text for query
refinement. In Proceedings of the Thirteenth International
World Wide Web Conference (WWW-2004), pages
666–674, 2004.

[13] C. D. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

[14] J. C. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In A. Smola, P. Bartlett, B. Schlkopf, and
D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 61–74. MIT Press, 1999.

[15] F. Radlinski and T. Joachims. Query chains: learning to
rank from implicit feedback. In KDD ’05: Proceedings of
the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, pages 239–248, New
York, NY, USA, 2005. ACM Press.

[16] K. M. Risvik, T. Mikolajewski, and P. Boros. Query
segmentation for web search. In Poster Session in The
Twelfth International World Wide Web Conference, 2003.

[17] I. Ruthven. Re-examining the potential effectiveness of
interactive query expansion. In Proceedings of the
Twenty-Sixth Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR-2003), pages 213–220, 2003.

[18] A. Spink, B. J. Jansen, and H. C. Ozmultu. Use of query
reformulation and relevance feedback by Excite users.
Internet Research: Electronic Networking Applications and
Policy, 10(4):317–328, 2000.

[19] E. Terra and C. L. A. Clarke. Scoring missing terms in
information retrieval tasks. In ACM Thirteenth Conference
on Information and Knowledge Management
(CIKM-2004), pages 50–58, 2004.

