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ABSTRACT
Most analysis of web search relevance and performance takes
a single query as the unit of search engine interaction. When
studies attempt to group queries together by task or session,
a timeout is typically used to identify the boundary. How-
ever, users query search engines in order to accomplish tasks
at a variety of granularities, issuing multiple queries as they
attempt to accomplish tasks. In this work we study real
sessions manually labeled into hierarchical tasks, and show
that timeouts, whatever their length, are of limited utility
in identifying task boundaries, achieving a maximum pre-
cision of only 70%. We report on properties of this search
task hierarchy, as seen in a random sample of user interac-
tions from a major web search engine’s log, annotated by
human editors, learning that 17% of tasks are interleaved,
and 20% are hierarchically organized. No previous work has
analyzed or addressed automatic identification of interleaved
and hierarchically organized search tasks. We propose and
evaluate a method for the automated segmentation of users’
query streams into hierarchical units. Our classifiers can
improve on timeout segmentation, as well as other previ-
ously published approaches, bringing the accuracy up to 92%
for identifying fine-grained task boundaries, and 89-97% for
identifying pairs of queries from the same task when tasks
are interleaved hierarchically. This is the first work to iden-
tify, measure and automatically segment sequences of user
queries into their hierarchical structure. The ability to per-
form this kind of segmentation paves the way for evaluating
search engines in terms of user task completion.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Query formu-
lation
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1. INTRODUCTION
Web search engines attempt to satisfy users’ information

needs by ranking web pages with respect to queries. But the
reality of web search is that it is often a process of querying,
learning, and reformulating. A series of interactions between
user and search engine can be necessary to satisfy a single
information need [18].

To understand the way users accomplish tasks and sub-
tasks using multiple search queries, we exhaustively anno-
tated 3-day long query sequences for 312 web searchers. We
limited the duration to three days to allow complete anno-
tation of every query sequence, with an extremely thorough
approach. These spans of time allowed us to identify tasks
which result in queries placed over multiple days, as well
as multiple tasks which may occur over several days. We
manually annotated these query sequences with tasks and
subtasks (which we will define as missions and goals), find-
ing that many tasks contained subtasks, and many different
tasks and subtasks were interleaved. While previous work
has examined the way users interleave tasks [9], no previous
work has examined the way tasks contain subtasks.

If we are able to accurately identify sets of queries with the
same (or related) information-seeking intent, then we will
be in a better position to evaluate the performance of a web
search engine from the user’s point of view. For example,
standard metrics of user involvement with a search engine or
portal emphasize visits or time spent [1]. However, each page
view can constitute small pieces of the same information
need and each visit could encompass some larger task. If we
could instead quantify the number of information needs or
tasks which a user addresses via a website, we would have a
clearer picture of the importance of the site to that user. In
particular, we could evaluate user effort in terms of queries
issued or time spent on a task, as the user attempts to satisfy
an information need or fulfill a more complex objective.

To this end, we built classifiers to identify task and sub-
tasks boundaries, as well as pairs of queries which corre-
spond to the same task, despite being interleaved with queries
from other tasks.



Our contributions include (1) analysis of typical timeouts
used to divide query streams into sessions, and demonstra-
tion that they are less than optimal for this task (2) hierar-
chical analysis of user search tasks into short-term goals and
longer-term missions (3) a detailed study of the frequency
and patterns of real user queries forming extended and in-
terleaved tasks which can be analyzed as missions and goals
in this hierarchy (4) a comparison of previously published
feature sets on our data and tasks, and (5) a list of fea-
tures going beyond timeouts and previously published fea-
ture sets that can be used effectively to identify goal and
mission boundaries, and pairs of non-adjacent queries be-
longing to the same goal or mission.

In Section 2, we discuss related work both in defining
“sessions” and automated segmentation of query logs into
tasks and sessions. In Section 3 we provide our definitions,
detail on the manual annotation of our data, statistics on
the missions and goals we find, and show that time-based
thresholds are of limited accuracy in identifying task bound-
aries. In Section 4 we introduce the supervised classification
which we perform to improve task identification, as well as
the features and methods we use. In Section 5 we show
that a model combining feature types can identify goals and
missions with extremely high accuracy, even when they are
interleaved. We also discuss performance of the individual
features on the classification tasks. Lastly, in Section 6, we
discuss conclusions and future directions for the work.

2. RELATED WORK
In library search systems, “sessions” were easy to identify:

users logged in for a single task then logged out again, so
login IDs could be used. Thus historically a session was
simultaneously (1) a set of queries to satisfy a single in-
formation need (2) a series of successive queries, and (3) a
short period of contiguous time spent querying and examin-
ing results. On the internet, however, we seldom have users
logging in and out on a task-by-task basis. In addition, iden-
tifiers such as IP addresses and cookies may be shared by
multiple users, as in the case of a shared computer. Thus the
term session has necessarily been split between these various
meanings, sometimes used for one, sometimes for another.

For web search, there have been a number of conflicting
attempts to segment and define sessions, which don’t di-
rectly address the idea of user information needs, but do
rely on a notion of similar context, topic, or temporal char-
acteristics. Many of these use the idea of a “timeout” cutoff
between queries. A timeout is the time between two succes-
sive activities, and it is used as a session boundary when it
exceeds a certain threshold. Often sessions are identified us-
ing a 30-minute timeout, apparently following Catledge and
Pitkow’s 1994 work, which claimed to find a 25.5 minute
timeout based on user experiments[4]. We will show in Sec-
tion 3.3 that this threshold is no better than random for
identifying boundaries between user search tasks.

Other time cutoffs have been proposed, from 5 to 120
minutes [11][17][6][2]. Montgomery and Faloutsos [11] tried
several cutoff values, but found that the choice of cutoff did
not matter. Additionally, a variety of mean session lengths
(number of queries in a session) have been found, most rang-
ing between 2-3 queries per session[17][8]. Mean session du-
rations (amount of time a session lasts) of 5 and 12 minutes
have been reported [6][8]. In Section 3.3 we look at all of
these timeout thresholds applied to real search engine data,

and find that no time threshold is effective at identifying
task boundaries.

Jansen et al. [8] defined a session as“a series of interactions
by the user toward addressing a single information need”,
and found experimentally that sessions were better identified
by query content – a single word in common between queries
– than by temporal cutoffs. Spink et al. by contrast [19]
discuss topic switching and multitasking in two and three
query sessions, implicitly defining a session as a sequence of
queries from a web-searcher, independent of the information
need.

A few researchers have worked on automatically detecting
session boundaries. He et al. [6] tried to detect topic shifts
in user query streams, devising an algorithm that checks for
deleted or added terms in queries thereby specifying a few
categories of user behavior, which are also applied in Oz-
mutlu and Cavdur [12]. Ozmutlu et al. [13] [14] used the
same categories and algorithm but a different classifier. All
of these rely solely on the feature of words in common be-
tween queries, and rewrite classes such as generalization and
specification. There was no manual labeling of ground truth,
and none of them addressed the interleaved, nested nature
of these topic shifts. Both cases rely solely on the feature
of words in common between queries, and used continuous
values to predict rewrite classes such as generalization and
specification, defined in terms of word insertion and deletion,
and they did no manual labeling of ground truth. None of
them addressed the interleaved, nested nature of these topic
shifts.

A separate body of work models the formal syntax of
users’ interactions with the search engine, rather than mak-
ing distinctions regarding what they seek. An entire list of
these approaches to date may be found in Downey et al. [5],
two of which deserve more detail.

Lau and Horvitz [9] manually assigned queries into a few
classes, including one to account for interleaving, labeling
each query in the context of the previous query. They exam-
ined the relationship between the inter-query time interval
and these classes in order to better use timeouts to predict
topic transitions in a probabilistic Bayesian network.

Radlinski and Joachims [15] identified sequences of queries
on the same topic. The authors manually grouped sequences
of queries into topics that had no hierarchical or interleaved
structure. They built a classifier using features both based
on shared words in the queries themselves, and shared words
in documents retrieved in response to the queries, but judged
a 30-minute timeout to be accurate at over 90%, and thus
used only that feature to group their chains. These results
were based on a library search engine, however, as we will
show in Section 3.3 their results with timeouts do not ap-
ply to a general purpose search engine, where users often
interleave topics, and time is not a good indicator of task
completion. In Section 5.1 we will demonstrate the perfor-
mance of their word and time features on our tasks, and
show that this is the best of previous methods for our tasks.

We will show in Section 5 that time combined with some
of the features proposed by previous authors can be used
to classify queries into their hierarchical structure: thus
demonstrating for the first time that we can identify user
tasks and their sub-tasks, even in the face of task inter-
leaving. We will also show that by adding novel query-log
features we can perform even better on the original tasks,
as well as our novel tasks.



3. SEARCH GOALS AND MISSIONS
In this section we define search goals and missions, then

describe the way we manually annotated them. We perform
an exploratory analysis and demonstrate that time-outs are
a poor way of identifying boundaries related to user tasks.

Definition 1. A search session is all user activity within
a fixed time window.

A session, for us, is just a slice of user time. Other defini-
tions (which conflict among themselves) involve an absence
of periods of inactivity, or imply a single information need
on the part of the user [4], [8], [2]; ours does not, since we
will be more specific with the terms goals and missions, de-
fined below, and use inactivity as a predictor, rather than
as a definition.

Definition 2. A search goal is an atomic information
need, resulting in one or more queries.

A goal can be thought of as a group of related queries to
accomplish a single discrete task. The queries need not be
contiguous, but may be interleaved with queries from other
goals (e.g., a user who is both looking for work-related in-
formation and information for the evening’s entertainment).

Definition 3. A search mission is a related set of infor-
mation needs, resulting in one or more goals.

A mission is then an extended information need (such as
finding a variety of interesting hiking spots, for a searcher
interested in hiking). In Figure 1, we see the resulting hi-
erarchy: sessions containing missions, which contain goals.
A goal may have multiple queries, and a mission may have
multiple goals. Temporally, these can all be interleaved.

3.1 Annotation procedure
We sampled 3 day-sessions for 312 users who submitted

a query to the Yahoo! Search engine during a week of mid-
2007. The sampling was stratified over days of the week,
so we did not have particular days of the week overrepre-
sented. The three day time period was deemed long enough
to capture extended search patterns for some users, exceed-
ing typical 30-minute timeouts, and allowing for goals and
missions to extend over multiple days. While it is the case
that some missions or goals may start or end before or after
the 3 day window of queries, this truncation should occur
randomly, and thus introduce no systematic bias in the sub-
ject of the mission or goal. Since none of our features depend
on the position of the query in the mission or goal, our model
should not be affected. However, our density estimates for
mission and goal lengths will necessarily be truncated at 3
days.

A group of annotators were instructed to exhaustively ex-
amine each session and “re-enact” the user’s experience.1

The annotators inspected the entire search results page for
each query, including URLs, page titles, relevant snippets,
and features such as spelling and other query suggestions.
They were also shown clicks to aid them in their judgments.
They were asked to then use their assessment of the user’s

1The user was designated with an anonymous identifier, and the
annotation was done in accordance with Yahoo!’s privacy policy,
with no information used to map the query stream to a particular
user.

Figure 1: Sample hierarchy of user missions and
goals, which correspond to some of the goals in the
sample session of Table 1.

objectives to label each session so that every query belonged
to a goal and every goal to a mission. Each unique goal and
mission was given an ID number and a description reflecting
the user’s objective. Each query was labeled with a goal and
mission ID number. A guideline for queries to belong to the
same goal was that they have the same criteria for “success”,
in terms of satisfying the user’s information need.

This is somewhat similar in nature to the editorial task in
[7], though the annotators did not re-submit queries, they
examined the query logs as input by the users themselves.
It differs somewhat from manual annotation methods in [8]
and [15] and [13] in that the criteria for grouping queries is,
not only hierarchical in nature, but tied to the users’ intents,
as opposed to just clustered in terms of “relatedness” to an
unspecified degree.

A strength of this approach is that the data is recorded
without any intervention, and as such can complement lab-
oratory and field studies. Additionally, we are able to look
at a large number of users at one time, over an extended pe-
riod of time. While it is clearly possible that editors may be
biased in their interpretation of a user’s missions and goals,
preliminary results in [7] seem to indicate that this method
can achieve reliable results. One of the future directions for
this work involves obtaining measures of inter-rater reliabil-
ity for the editorial work, as well as studying editorial bias
against user self-reporting.

Our aggregate data consists of 312 user sessions, with 1820
missions, 2922 goals and 8226 queries. In Table 1 we see a
sample sequence of user queries, annotated with goals and
missions. Then timestamps are also given - note that many
queries from the same goal are separated by several minutes,
while a goal-change (goal 3 to goal 4) takes place within three
seconds.

3.2 Patterns of Goals and Missions
In Table 2 we see a summary of goal and mission lengths,

in terms of number of queries, and elapsed time from first to
last query in the goal or mission2. Median goal and mission
length of two queries is in line with the findings of [8] for ses-
sion lengths based on segmentation by query topic. Figure 2

2Note that duration is calculated as t(qn)−t(q1), where t is time,
qn is the last query in the mission or goal and q1 is the first. Thus
our measure of duration includes query times only, and not clicks
or other actions. This is similar to the duration used in [8], but
not in [4]. It also means that many durations are zero.



QUERY and TIMESTAMP GOAL # MISSION # DESCRIPTION

hiking; san francisco 1 1 MISSION 1:
Tue Apr 17 23:43:17 2007 (4m 17s) Find info on hiking opportunities in and around San Francisco
hiking; san francisco bay area 1 1 GOAL 1:
Tue Apr 17 23:47:34 2007 (4m 59s) Find info on hiking trails in San Francisco and the Bay Area
ano nuevo state reserve 2 1 GOAL 2:
Tue Apr 17 23:52:33 2007 (7m 54s) Navigate to Ano Nuevo State Reserve and ↓nd out about distances
ano nuevo state reserve; miles 2 1
Wed Apr 18 00:00:27 2007 (3m 34s)
nature trails; san francisco 1 1
Wed Apr 18 00:04:01 2007 (16m 15s)
lobos creek trail 3 1 GOAL 3:
Wed Apr 18 00:20:16 2007 (0m 3s) Navigate to Lobos Creek Trail
china camp state park; san rafael 4 1 GOAL 4:
Wed Apr 18 00:20:19 2007 (2m 35s) Navigate to China Camp, San Rafael and ↓nd out about distances
china camp; miles 4 1
Wed Apr 18 00:22:54 2007 (20m 2s)
hike; san francisco 1 1
Wed Apr 18 00:42:56 2007 (3m 19s)
fort funston 5 1 GOAL 5:
Wed Apr 18 00:46:15 2007 (1h 51m 26s) Navigate to Fort Funston

MISSION 2:
Find info on car maintenance and repair

brake pads 6 2 GOAL 6:
Wed Apr 18 03:36:47 2007 (16m 36s) Find info on brake pads
auto repair 7 2 GOAL 7:
Wed Apr 18 03:53:23 2007 (8m 0s) Find info on an auto body shop in San Francisco
auto body shop 7 2
Wed Apr 18 04:01:23 2007 (3m 31s)
batteries 8 2
Wed Apr 18 04:04:54 2007 (0m 29s)
car batteries 8 2 GOAL 8:
Wed Apr 18 04:05:23 2007 (2m 8s) Find info on purchasing a car battery
auto body shop; san francisco 7 2
Wed Apr 18 04:07:31 2007 (3m 33s)
buy car battery online free shipping 8 2
Wed Apr 18 04:11:04 2007

Table 1: Sample of a sequence of user queries annotated with goals and missions. Horizontal lines mark
changes in goal, and double horizontal lines mark changes in mission. The description for a goal or mission
is input around the same line as the first query which belongs to that goal or mission. In this example, the
goals are interleaved, but the missions are not. However, in general the missions may be interleaved as well;
in our data 17% of missions were interleaved.

Goals Missions

Num queries
min 1 1
max 52 233
median 2 2

Duration
min 0 mins 0 mins
max 71 hours 71 hours
median 0.42 secs 38 secs

Table 2: Summary statistics about missions and
goals. The distributions of number of queries and
task duration can be seen in Figures 2 and 3.

shows the density of number of queries per goal and mission.
Density plots show Gaussian kernel density estimates, with
bandwidths chosen by Silverman’s rule [16].

63% of goals are under one minute, but 15% spanned 30-
minute periods of inactivity. This means that a 30 minute
time-out will break up 15% of goals. The density of goal
and mission durations are in Fig 3.

Most goals and missions have few queries, though a few
have many queries. Some missions lasted the entire 3 day
session, and those users appeared to make related or re-
peated queries an average of every few hours, in some cases
looking at baby names, or checking up on favorite television
stars. Recall that missions and goals may be interleaved,
so these long durations do not necessarily entail continuous
engagement at some task. 16% of goals are revisited or inter-
leaved with other goals, and 17% of missions are revisited or
interleaved with other missions. Of the interleaved missions,
41% contained multiple goals, whiled 59% contained a single
goal (which was itself interleaved with a goal from another
mission). It is not surprising that users would repeat infor-

mation needs; Teevan et al [20] found that 40% of queries
are “re-finding” queries. In addition, we find that 20% of
missions contain multiple goals. An example mission con-
taining multiple goals consisted of wedding planning queries,
for wedding gowns, invitations, and wedding planning lists.
We also see the evolution of users’ shopping intent over the
course of a mission, with a query for “bridal dresses” on one
day, and another query in the same mission the following
day, containing “bridal dresses” and the name of a bridal
dress store. The user is moving from learning about general
options to bridal dresses, to looking for a particular store to
buy the dress.

Thus any task-segmenting approach which does not con-
sider the hierarchical and interleaved nature of search tasks
will break up tasks which belong together.

In preliminary experiments we found many queries re-
peated immediately after one another, representing either
the user re-issuing the query, hitting the ‘next’ button, re-
freshing the page, or an automatic resubmission on the part
of the browser. Removing the repeated queries decreased the
total number of queries from 8226 to 6043, thus just over a
quarter of all queries were repeats of the previous query.

3.3 Analysis of Session Timeouts
Most previous work has used temporal features, commonly

a “timeout”: an elapsed time of 30 minutes between queries
which signifies that the user has discontinued searching. How-
ever, on our data time does not appear to be an especially
good predictor, particularly of goal boundaries. Precision
for different values of inter-query time-lag are shown in Fig-
ure 4.

In Table 3 we see that a 30-minute threshold on inter-
query interval is more accurate than the baseline (always
guess there is no task boundary between each sequential



Figure 2: Density for the number of queries per goal,
and number of queries per mission, on a log plot.

Figure 3: Density for the time span of goals and
missions, in minutes, on a log plot.

Figure 4: As we increase the inter-query interval
threshold, the precision at identifying mission and
goal boundaries increases, however, we do not see
precision much above 70% for identifying missions
and above 80% for identifying session boundaries.

pair of queries). Training a threshold (thirteen minutes)
does not improve the accuracy for mission boundary identi-
fication, but the learned threshold of just under 5 minutes
improves goal boundary identification from 67% accuracy at
a 30 minute threshold, to 71%. All differences are statisti-
cally significant. Our conclusions agree with those of [11]
that multiple threshold choices give similar accuracy.

Clearly, while using session timeouts can achieve task break-
ing with accuracy better than assuming there are no breaks,
in general there is no ideal choice of threshold, and us-
ing time the precision is capped at 70-80%, depending on
whether we seek goal or mission boundaries. The 30-minute
standard receives no support from our results. In the next

Time threshold Goals Missions
Boundary Boundary

Baseline 54.2% 70.9%
5 minute 71.2% 75.6%
30 minute 66.5% 78.6%
60 minute 64.2% 77.6%
120 minute 62.0% 76.1%
Trained time 71.2% 78.6%

Table 3: For data which includes repeat queries:
In-sample accuracy at predicting goal and mission
boundaries, as well as same-goal/mission, using
inter-query thresholds alone. Trained times for goal
and mission boundaries were 5 mins and 13 minutes,
respectively.

section we will show that we can greatly improve on task
segmentation by considering multiple predictors, going be-
yond inter-query time to include properties of the queries
themselves.

4. AUTOMATIC DETECTION OF GOALS
AND MISSIONS

In this section we describe our formulation of automatic
detection of search goals and missions as a supervised ma-
chine learning task. We then describe the features we use in
our experiments for identifying goals and missions, and the
classifiers we use to learn to recognise them. In particular,
we introduce a way of identifying when queries belong to the
same goal or mission, despite being interleaved, something
not addressed in any previous work.

4.1 Formulation for Supervised Learning
If goals and missions are not interleaved, as has been as-

sumed by previous work, it suffices to find a boundary be-
tween one task and the next. To do this we can look at each
sequential pair of queries and ask whether this pair straddles
a boundary. Thus we look at task boundary detection. This
task has been addressed by previous approaches for identify-
ing goals, so we can examine how well previous approaches
work on our data. Previous work has not considered this
task for higher-level missions, but we can also consider the
efficacy of their features on this novel problem.

In order to address interleaved missions and goals, we
must consider all possible pairs of queries, and consider
whether the pair of queries come from the same task. Cor-
rectly performing this task will allow hierarchichally orga-
nized interleaved goals and missions to be correctly identi-
fied. We call this same-task identification. No previous work
has addressed this problem.

4.1.1 Task Boundary Detection
Each pair of sequential queries from a user is a possi-

ble boundary between goals. Thus we seek to take each
such pair and decide whether the pair crosses a boundary
between goals, i.e., whether the two queries come from dif-
ferent goals. This is the task traditionally addressed using
timeouts. Formally we consider the task:

{〈qi, qj〉 : (t(qi) < t(qj))
^

(6 ∃qk : t(qi) < t(qk) < t(qj))} → {0, 1}

where t(qi) is the time query qi was issued by the user.



Of our original 8226 queries including repeats, some begin
and end user sessions, so we trivially ignore these boundaries
and wind up with 7914 pairs of sequential queries. Of these
3622 were goal boundaries, so we should guess a position is a
boundary 45.8% of the time, and a non-boundary otherwise.
Thus our baseline is 54.2% accuracy.

As with goal boundaries, any sequential pair of queries
can mark the transition from one mission to another. (Note
that a mission boundary is always a goal boundary.) Our
baseline is 71% as 5608 of 7914 pairs of sequential queries
are not mission boundaries.

4.1.2 Same-Task Identification
Since goals can be inter-leaved, any pair of queries from

the same user could be from the same goal. We seek to learn
a classifier to take a pair of queries and map it to a 1 if they
are from the same goal, and a 0 of they are from different
goals. We consider all pairs of queries qi, qj such that qi was
issued before qj :

{〈qi, qj〉 : t(qi) < t(qj)} → {0, 1}
where t(qi) is the time query qi was issued by the user.

Since we are considering all pairs of queries, not just se-
quential ones, there are many more instances to consider.
We see 305,946 pairs of queries, of which 278,152 or 91% are
not for the same-goal so our baseline accuracy is 91%. Using
the same definitions for same-mission our baseline is 67.5%
since 67.5% of 305,946 query pairs were from different mis-
sions. Any pair of queries corresponding to the same goal
will also correspond to the same mission.

Solving these two problems, same-goal and same-mission
for arbitrary pairs of queries from a user’s query stream will
allow us to identify their complete set of tasks, even those
that are nested and hierarchical.

4.2 Features for Identifying Goals and Mis-
sions

We experimented with many features from the following
four general types: temporal, edit-distance, query log and
web search. Below we give details of those that contributed
to classification efficacy. Temporal features have been com-
monly used in previous work ([11][17][6][2]); edit distance
has been used in several previous works ([6],[14]) and web
search features have also been used in previous work [15].
No previous work has used query log session features, and
we will show that combinations of these four types of fea-
tures provide superior performance on the boundary detec-
tion problem, and superior performance on the previously
untackled same-task problem.

4.2.1 Temporal Features
While we showed in Section 3.3 that timeouts alone are

poor predictors of task boundaries, they may be helpful in
conjunction with other features. Temporal features we ex-
perimented with are:

• inter-query time threshold as a binary feature (5 mins,
30 mins, 60 mins, 120 mins)

• time diff: inter-query time in seconds: we may be able
to learn good thresholds of inactivity for identifying
goal and mission boundaries.

• sequential-queries: binary feature which is positive if
the queries are sequential in time, with no intervening

Feature Description
lev normalized Levenshtein edit distance
edlevGT2 1 if lev > 2, 0 otherwise
char pov num. characters in common starting from the left
char suf num. characters in common starting from the right
word pov num. words in common starting from the left
word suf num. words in common starting from the right
commonw num. words in common
wordr Jaccard distance between sets of words

Table 4: Word and Character Edit Features used for
predicting goal and mission boundaries and cooccur-
rence on query pairs.

Query Pair log (LLR)
uofa → university of arizona 8.4
wedding strapless gowns → strapless wedding gowns 7.9
large daisy → flower 7.3

Table 5: Pairs of queries which occur in user query
sequences much more than would be expected by
chance, along with the log-likelihood ratio score.

queries from the same user. We expect this feature to
be useful for the same-goal and same-mission tasks.

4.2.2 Word and Character Edit Features
Sequences of queries which have many words and/or char-

acters in common tend to be related via a query reformu-
lation, for example word insertion or deletion [15, 18]. In
addition, related queries from the same goal or mission may
have some words in common. Character-edit distance can
capture spelling variants and common stems, while word-
level features capture common words.

Specific features are shown in Table 4.

4.2.3 Query Log Sequence Features
Sometimes goals and missions may contain pairs of queries

which are semantically related, but which do not share any
terms. For example, “new york hairdresser” and “tribeca sa-
lon” may be from the same goal: looking for a hair-stylist
in New York City. To try to capture these semantic rela-
tionships, we use a separate data source3 to identify pairs
of queries, 〈qi, qp〉, which occur together much more than
chance, which we test using the log-likelihood ratio score
[10] (LLR).

Because we test millions of pairs of queries, we can have
false positives of coincidentally cooccurring query pairs. A
threshold level for the LLR was chosen in order to control
false positives, including adjustment for multiple testing,
correcting a standard chi-square cutoff for 95% significance.
Sample query pairs which pass this threshold are shown in
Table 5. After thresholding on the LLR, we use a number of
features related to the frequencies and probabilities of seeing
the query pair together. Specific features which used rewrite
probabilities for the query pair 〈q1, q2〉 are shown in Table
6.

• llr: the result of a statistical test (LLR [10]) indicating
that the pair of queries occur in sequence more than
could be expected by chance

3Two weeks of pairs of sequential queries to the search en-
gine, in 2006.



Feature Description
llr LLR of cooccuring query pair
peos q2 prob q2 is a user’s last query of the day
pq12 p(q1 → q2)/maxqj p(q1 → qj)
entropy X q1

P
i p(q1|qi)log2(p(q1|qi))

entropy q1 X
P

i p(qi|q1)log2(p(qi|q1))
nsubst X q1 count(X : ∃p(X → q1)
nsubst X q2 count(X : ∃p(X → q2)
nsubst q2 X count(X : ∃p(q2 → X)
seen in logs qp 1 if LLR(q1, q2) > threshold
p change

P
(p1 → pj) : pj 6= p1

Table 6: Query Log Features used to help identify
goal and mission boundaries p(q1 → q2) is the proba-
bility q1 is reformulated as q2 in a large query log.

• peos q2: the probability that q2 is a user’s last query
of the day, based on aggregating queries that are the
last before midnight

• pq12: the normalized probability that q1 is rewrit-
ten as q2 aggregated over many user sessions, p(q1 →
q2)/maxqj p(q1 → qj)

• entropy X q1: the entropy of rewrite probabilities from
queries which can be rewritten as q1 (after LLR filter-
ing),

P
i p(q1|qi)log2(p(q1|qi))

• entropy q1 X: analagously
P

i p(qi|q1)log2(p(qi|q1))

• nsubst X q1: the number of different queries that have
been seen in the logs rewritten as q1 (after LLR thresh-
olding) count(X : ∃p(X → q1)

• nsubst X q2: count(X : ∃p(X → q2)

• nsubst q2 X: count(X : ∃p(q2 → X)

• seen in logs qp: 1 if LLR(q1, q2) > threshold

• p change:
P

(p1 → pj) : pj 6= p1

4.2.4 Web Search Features
We include features which depend on the documents re-

treived by the search engine for the queries. Similarity be-
tween a query pair is measured by commonalities among the
terms or characteristics of those documents.

• Prisma: cosine distance between vectors derived from
the first 50 search results for the query terms. In this
case, the terms are limited due to a dictionary, in a
method developed in Anick [3][2]. It is similar in na-
ture to the best performing feature in Radlinski and
Joachim’s classifier [15].

4.3 Classifier
We use a logistic regression model, with 10-fold cross-

validation. In order to better handle feature selection for
large sets of correlated features, we also tried LASSO, which
includes regularization, and CART decision trees, however,
we achieved similar results in both cases. When performing
feature selection for small subsets, we used an exhaustive
search of linear models with Akaike Information Criterion
(AIC) to select the best features (also known as all subsets
regression).

Feature Goals Missions
Boundary Same Boundary Same

Baseline 54.2% 90.9% 70.9% 67.5%
lev 89.0% 95.3% 84.1% 77.9%
wordr 86.9% 95.1% 83.9% 78.6%
commonw 82.9% 91.0% 83.9% 79.7%
Time interval 62.5% 90.9% 73.8% 67.6%

Table 7: For data which includes repeat queries:
normalized Levenshtein distance dominates other
features for most tasks. Thanks to the large number
of examples in our tests, all differences are statisti-
cally significant.

Features Goals Missions
Boundary Same Boundary Same

Baseline 63.1% 94.8% 59.9% 70.5%
30 minute 57.2% 90.9% 73.8% 74.4%
Trained time 69.5% 92.6% 75.8% 74.4%
commonw 80.7% 94.9% 79.3% 78.9%
commonw+prisma+time 84% 82.1%

Table 8: Prediction accuracy based on features pro-
posed in previous work. Trained time thresholds
for boundaries were 1.5 mins for goals and 6 mins
for missions. For identifying same-goal 17.2 mins
and same-mission 47 mins. The best performing
previously published feature combination is com-
monw+prisma+time. All differences are statisti-
cally significant.

5. RESULTS
Used alone, Levenshtein character edit distance did well

in 3 of 4 tasks, especially when repeat queries were included
(Table 7). However, a quarter of all sequential query pairs
consisted of identical queries, belonging to the same goal or
mission. Thus much of our data was easy to classify with
Levenshtein distance (a distance of zero).4 In this section
we address the harder problem of classifying those query
pairs which are not repetitions. Our baselines, with repeated
queries removed, are 63% for goal boundary identification,
60% for mission boundary, 95% for same-goal identification,
and 71% for same-mission.

5.1 Baselines from Previous Work
In this section we give results using features proposed in

previous work, applied to our data. To compare to ap-
proaches using time, we use both a thirty-minute thresh-
old, as well as time thresholds learned using cross-validation.
To compare with word-insertion and deletion approaches
([6],[14]), we use the word-edit feature commonw, and to
compare to word-edit, web-result and time features we use
commonw+prisma+time [15]. In all cases we trained a lo-
gistic regression function on training data, and used ten-fold
cross-validation for testing.

We see in Table 8 that on web search data, Radlinski
and Joachims’ result does not hold, that a thirty-minute
threshold obtains similar results to a combination of com-
mon words and web-search result similarity [15]. We see that
our re-implementation of their classification features, using
commonw+prisma+time, is the best-performing previously
published approach.

4Additionally, these identical query pairs do not have well-defined
query log features, since repeated queries were removed before
query log feature computation.



Features Mission Boundary
Boundary +repeats

Baseline 59.9% 70.9%
commonw+prisma+time 82.1%

lev, wordr, peos q1
prisma, time diff, peos q2
n subst X q2 , seen in logs qp 84.4% 90.8%

Features Goal Boundary

Boundary +repeats
Baseline 63.1% 54.2%
commonw+prisma+time 84%

lev, prisma, wordr,
word suf, char suf,char pov
word pov, n subst X q1 87.3% 93.0%

Table 9: Accuracy at predicting mission and goal
boundaries, using the most predictive models, as
judged by exhaustive search of logistic regression
models with AIC as selection criterion. com-
monw+prisma+time is the best performing previ-
ously published feature combination for the goal
boundary task. All differences are statistically sig-
nificant.

5.2 Best Classifier Results
We are able to build highly accurate classifiers for goal

and mission boundaries as well as identifying pairs of queries
from the same goal or mission. When we combine all four
types of features we achieve best results, as shown in Tables
9 and 10.

In these tables we summarize features and performance
for learned models in the no-repeat cases, as well as folding
in the repeated-queries under the assumption that a query
repeat is a non-boundary (which is correct in all cases). We
see that our best model exceeds the best previously pub-
lished feature combination on our data for the task bound-
ary problem, as well as providing strong results for the new
problem of identifying query pairs as being from the same
task, even when interleaved and hierarchically organized.

We see that after removing repeated queries, we clearly
gain from a combination of features in all four groups: edit-
based, query-log, web-search and time. The models were se-
lected via exhaustive search of all models with 8 predictors,
using AIC as the selection criterion. While these models
contain small subsets of the original features, the accuracy
was comparable to that obtained with all features. We re-
stricted this exhaustive search to 8 features as when we used
subsets larger than 8 features, the feature selection began to
become computationally extremely expensive. When we fold
back in the instances of repeated queries, we can compare
our results to those in Table 7 where we trained with the re-
peated queries. While the best accuracy for goal boundaries
with timeouts was 62.5%, this combined model gives an ac-
curacy of 93.0%, improving on edit distance features alone,
which gave an accuracy of 89%. For mission boundaries,
the combined model greatly outperforms the time-interval
and edit-distance models, lifting from 67.6% and 79.7% to
90.8%.

5.3 Contributions of Feature Classes
We showed above that by using a combination of four

types of features, we could outperform time-based segmen-
tation (which we showed achieved accuracies of around 70%,

Features Same Mission

Same +repeats
Baseline 70.5% 67.5%

commonw, word suf, entropy X q1
nsubst q2 X, pq12, char pov
111r12, time diff 88.36% 88.8%

Features Same Goal

Same +repeats
Baseline 94.8% 90.9%
edlevGT2, wordr, char suf
nsubst q2 X, time diff, sequential,
prisma, entropy q1 X 97.09% 97.2%

Table 10: Accuracy at predicting same-
mission/goal, using the most predictive models,
as judged by exhaustive search of logistic regres-
sion models with AIC as selection criterion. All
differences are statistically significant.

Edit Distance Goals Missions
Boundary Same Boundary Same

Baseline 63.1% 94.8% 59.9% 70.5%
lev 85.0% 95.2% 78.2% 77.0%
wordr 83.9% 95.3% 79.2% 77.9%
commonw 80.7% 94.9% 79.3% 78.9%

Table 11: Prediction accuracy for features based on
edit distance between queries alone. All differences
are statistically significant.

Edit Distance Goals Missions
Boundary Same Boundary Same

Baseline 63.1% 94.8% 59.9% 70.5%
lev+time 85.0% 95.8% 78.3% 76.8%
commonw+time 81.5% 95.3% 79.3% 78.9%
wordr+time 84.2% 95.9% 79.3% 77.0%

Table 12: Prediction accuracy based on edit distance
between queries as well as inter-query interval. The
latter does not appear to help. All differences are
statistically significant.

compared to our accuracies of around 90%). We also showed
that by using 8 features from the four types edit-distance,
web-search, query log and time, we could improve over the
best previously published combination of features
(commonw+prisma+time). In this section we examine the
contribution of each of the feature types separately.

5.3.1 Edit Distance
Even after removing repeated queries, Levenshtein char-

acter edit distance is the best edit-based feature for iden-
tifying goal boundaries (Table 11), and words-in-common
(commonw) is the best edit-based feature for identifying
mission boundaries as well as same-mission. Ratio of words
in common (Jaccard distance) performs best for same-goal.
In general, this group of features performs well for all four
tasks. Adding time to character edit distance does not help
in identifying goal or mission boundaries (Table 12). This is
similar to most previous work on identifying task boundaries
([6],[14]).



Query Log Feature Goals Missions
Boundary Same Boundary Same

Baseline 63.1% 94.8% 59.9% 70.5%
pEOSq2 63.1% 94.8% 66.4% 70.5%
p change 67.1% 94.8% 59.9% 70.5%

Table 13: Prediction accuracy using best-
performing query session cooccurrence features.
These improve over baseline for boundary identi-
fication, but not the same-goal/mission task. All
differences are statistically significant.

Web Search Feature Goals Missions
Boundary Same Boundary Same

Baseline 63.10% 94.75% 59.87% 70.51%
Prisma Score 78.5% 94.8% 77.1% 73.0%

Table 14: Prediction accuracy with Prisma vector
similarity, the best-performing web search feature
we tried.

5.3.2 Query Log Features
End-of-session features help with mission boundary iden-

tification (Table 13), and probability of being rewritten does
slightly better at detecting goal boundaries, but other query
log features in isolation do not improve over the baseline.
It’s possible that the probability of the first query being
rewritten may indicate that the second query is more likely
to be a reformulation of the first, and thus part of the same
goal. One can imagine that “last query of the day” might be
useful as an indicator for the last query in a task, since often
people will finish up a task before turning in for the day. In
our external data-source, days were truncated at midnight.
We may be able to improve the suitability of query log fea-
tures for this task by considering different ways of breaking
the data using other markers.

5.3.3 Web Search Features
Of the web search features we tested, the Prisma score

outperformed all others (Table 14). However, unlike those
other features, as well as the query log features, it had not
been pre-computed for the more common queries, to save
computational cost. This makes it slower to obtain, yet
gives it superior coverage.

6. CONCLUSIONS AND FUTURE WORK
We have shown that a diverse set of syntactic, tempo-

ral, query log and web search features in combination can
predict goal and mission boundaries well. (When used inde-
pendently, word and character based features perform best).
Our classifiers achieve at least 89% accuracy in all four tasks,
and over 91% in all but one task, matching within the same
goal. Additionally, we’ve shown that the task of match-
ing queries within the same interleaved goal or mission is
harder than identifying boundaries. This may indicate that
the best approach to clustering queries within the same goal
or mission may build on first identifying the boundaries,
then matching subsequent queries to existing segments. It
may also be effective to use multi-task machine learning to
join the tasks of identifying mission and goal boundaries to-
gether.

The utility of adopting a hierarchical model for the group-
ing of user queries will allow us to more easily model what

type of task the user may be doing when querying, e.g. is
the user performing a series of searches with information
needs which are the same, or are the information needs only
peripherally related? This may help us determine when the
user is performing a more complicated task, vs. a simpler
task. Including the interleaving in the model allows us to
more accurately measure the length of time or number of
queries a user needs to complete tasks. If we ignore the fact
that a more involved task may be interrupted with other
needs for information, we lose the ability to model these
more involved tasks.

Our work sets the stage for evaluating search engines, not
on a per-query basis, but on the basis of user tasks. In fu-
ture work we will combine task segmentation with prediction
of user satisfaction, which opens up the possibility of truly
understanding how web search engines are satisfying their
users.
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