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Abstract
We extend the traditional active learning framework to include feedback on features in addition

to labeling instances, and we execute a careful study of the effects of feature selection and human
feedback on features in the setting of text categorization. Our experiments on a variety of cate-
gorization tasks indicate that there is significant potential in improving classifier performance by
feature re-weighting, beyond that achieved via membership queries alone (traditional active learn-
ing) if we have access to an oracle that can point to the important (most predictive) features. Our
experiments on human subjects indicate that human feedback on feature relevance can identify a
sufficient proportion of the most relevant features (over 50% in our experiments). We find that
on average, labeling a feature takes much less time than labeling a document. We devise an al-
gorithm that interleaves labeling features and documents which significantly accelerates standard
active learning in our simulation experiments. Feature feedback can complement traditional active
learning in applications such as news filtering, e-mail classification, and personalization, where the
human teacher can have significant knowledge on the relevance of features.
Keywords: Active Learning, Feature Selection, Relevance Feedback, Term Feedback,
Text classification

1. Introduction
Automated text categorization has typically been tackled as a supervised machine learning problem
(Sebastiani, 2002; Lewis, 1998). The training data should be fairly representative of the test data
in order to learn a fairly accurate classifier. In document classification where categories can be as
broad as sports, this means that a large amount of training data would be needed. The training data
is often labeled by editors who are paid to do the job. Now consider a scenario where a user wants
to organize documents on their desktop into categories of their choice. The user might be willing to
engage in some amount of interaction to train the system, but may be less willing to label as much
data as a paid editor. To build a generic text categorization system that could learn almost arbitrary
categories based on an end user’s changing needs and preferences, for example in applications such
as news filtering and e-mail classification, the system should extract a large number of features. In� . This work was done in part when the author was at Yahoo! Research.
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e-mail classification for example, any subset of the features extracted from the subject, the sender,
and the text in the body of the message could be highly relevant. While algorithms such as Winnow
(Littlestone, 1988) and Support Vector Machines (SVMs) (Joachims, 1998) are robust in the pres-
ence of large numbers of features, these algorithms still require a substantial amount of labeled data
to achieve adequate performance.

Techniques such as active learning (Cohn et al., 1994), semi-supervised learning (Zhu, 2005),
and transduction (Joachims, 1999) have been pursued with considerable success in reducing labeling
requirements. In the standard active learning paradigm, learning proceeds sequentially, with the
learning algorithm actively asking for the labels (categories) of some instances from a teacher (also
referred to as membership queries). The objective is to ask the teacher to label the most informative
instances in order to reduce labeling costs and accelerate the learning. Still, in text categorization
applications in particular, active learning might be perceived to be too slow, especially since the
teacher may have much prior knowledge on relevance of features for the task. Such knowledge may
be more effectively communicated to the learner than mere labeling of whole documents. There has
been very little work in supervised learning in which the teacher is queried on something other than
whole instances.

One possibility is to ask the user questions about features. That users have useful prior knowl-
edge which can be used to access information is evident in information retrieval tasks. In the infor-
mation retrieval setting, the user issues a query, that is, states a few words (features) indicating her
information need. Thereafter, feedback which may be either at a term or at a document level may
be incorporated. In fact, even in traditional supervised learning, the editors may use keyword based
search to locate the initial training instances 1. However, traditional supervised learning tends to
ignore this knowledge of features that the user has, once a set of training instances have been ob-
tained. In experiments in this paper we study the benefits and costs of feature feedback via humans
on active learning.

We try to find a marriage between approaches to incorporating user feedback from machine
learning and information retrieval and show that active learning should be a twofold process – at
the term-level and at the document-level. We find that people have a good intuition for important
features in text classification tasks, since features are typically words, and the categories to learn
may often be approximated by some disjunction or conjunction of a subset of the features. We show
that human knowledge on features can indeed increase active learning efficiency and accelerate
training significantly in the initial stages of learning. This has applications in e-mail classification
and news filtering where the user has knowledge of the relevance of features and a willingness to
label some (as few as possible) documents in order to build a system that suits her needs.

This paper extends our previous work in employing such a two-tiered approach to active learning
(Raghavan et al., 2005). We state the active learning problems that we address and present our
approach to use feedback on both features and instances to solve the problems in Section 2. We
give the details of the implementations in Section 3. In Section 4 we describe the data and metrics
we will use to evaluate the performance of active learning. We obtain a sense of the extent of the
improvement possible via feature feedback by defining and using a feature oracle. The oracle and
the experiments are described in Section 2, and the results are reported in Section 5. In section 6 we

1. See http://projects.ldc.upenn.edu/TDT4/Annotation/label_instructions.html. The
annotators at the LDC (Linguistic Data Consortium, home-page: http://ldc.upenn.edu) use a combination
of techniques like nearest neighbors and creative search to annotate corpora for the Topic Detection and Tracking
(Allan, 2002) task.
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show that humans can indeed identify useful features. Furthermore, we find that labeling a feature
takes 1/5th the time of labeling a document. In Section 6.2 we show that the human-chosen features
significantly accelerate learning in experiments that simulate human feedback in an active learning
loop. We discuss related work in Section 7 and conclude in Section 8.

Standard Active Learning

Input: � (Total number of feedback iterations), � (Pool of unlabeled instances), init size (number
of random feedback iterations)
Output: ��� (Model)

�
	�� ; �� 	 � ; �� 	 NULL;
1. While ��� init size

a. ������������� = Instance Selection( �� , ����� �!�#"%$'&)(+*-,/.
b. Teacher assigns label 0 � to � �
d. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
c. �)@A@

2. While ��� �
a. ������������� = Instance Selection( �B��� � , ����� �!��C6&)D8EF" � $'9�&G.
b. Teacher assigns label 0 � to � �
c. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
d. �)@A@

Return �H�

Instance Selection

Teacher/
Oracle

  M

Steps 1,2

t<=T

Figure 1: Algorithm and block diagram for traditional active learning where the system asks for
feedback on instances only (System 1).

2. Active Learning

For background on the use of machine learning in automated text categorization as well as active
learning, we refer the reader to the works of Sebastiani (2002) and Lewis and Catlett (1994). Ac-
tive learning techniques are sequential learning methods that are designed to reduce manual training
costs in achieving adequate learning performance. Active learning methods reduce costs by request-
ing training feedback selectively and intelligently from a teacher. The teacher is a human in the text
categorization domain. The teacher may also be called the user, especially when the teacher training
the model is the same as the person using it, for example a user who is training a personalized news
filtering system. Traditionally in active learning the teacher is asked membership queries which are
questions on the class labels or categories of selected instances (documents in our case).

The teacher is sometimes referred to as an oracle in the literature (Baum and Lang, 1992). We
will also use the term oracle to refer to a source that gives feedback on instances and/or features, but
in this paper we make a distinction between teacher and oracle. We will reserve the term teacher
or user to refer to a real human, whose feedback may not be perfect, and we use the term oracle to
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refer to a source whose feedback is (close to) perfect for speeding active learning. See Section 2.1
for a longer discussion of the distinction between the two.

A typical algorithm for active learning and a block diagram are shown in Figure 1. An instance� (which is a document in our case) belongs to a class 0 . � is represented as a vector I#� ;<;<; I6J of
features, where K is the total number of features. The features we use for documents are words,
bi-grams (adjacent pairs of words) and tri-grams (adjacent triples of words), since these have consis-
tently been found to work well for topic classification. The value of I L is the number of occurrences
of term 9 in document � . We work on binary one-versus-rest classification. Therefore the value of0 for each learning problem of interest is either -1 or 1, signaling whether the instance belongs to
the category of interest, or not. An instance in the document collection is unlabeled if the algorithm
does not know its label (Y value). The active learner may have access to all or a subset of the
unlabeled instances. This subset is called the pool (denoted by � ).

Active Learning Augmented with Feature Feedback

Input: � (Total number of feedback iterations), � (Pool of unlabeled instances), init size (number
of random feedback iterations)
Output: ��� (Model)

�
	�� ; �  	 � ; �  	 NULL;
1. While ��� init size

a. �����M������� = Instance Selection( �B , �N��� �!��"-$'&)(+*-,/.
b. Teacher assigns label 0O� to ���
c. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
d. �)@A@

2. While ��� �
a. ��� � ��� � � =

Instance Selection( �B��� � , �N��� �!��CP&)DQEF" � $'9�&G.
b. Teacher assigns label 0O� to ���
c. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
d. i. 1FR � � ;<;<; ��R#S > = Feature Selection( ��� ,��� )

ii. Teacher selects 1FR � � ;<; ��RUT >WV 1FR � � ;<;<; ��R#S >
e. Incorporate Feature Feedback( ��� , 1FR
�%� ;<;<; ��RUT > )
c. �)@A@

Return �H� .

Feature Selection

Instance Selection

Teacher/
Oracle

t <= T

Step 2

Instance Selection

t <= init_size

Step 1

M

M

Figure 2: An active learning system where feedback on features is also requested (System 2).

The algorithm begins by training the classifier or model � on some initial set of labeled in-
stances of size init size. The subscript � on � , � , � and 0 correspond to the value when � instances
have been labeled. The initial set is picked by a random sampling procedure (step 1) from � . The
parameter random is passed to it. Sometimes one may use keyword based search or some other pro-
cedure in place of random sampling. Next, active learning begins. In each iteration of active learning
the learner selects an instance from � using some criterion (e.g., a measure of informativeness) and
asks the teacher to label it (step 2.a). In a popular active learning method, called uncertainty sam-
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pling, the classifier selects the most uncertain instance (Lewis and Catlett, 1994), for a given model
( X ) and a pool of unlabeled instances (� ). The newly labeled instance is added to the set of labeled
instances and the classifier is retrained (step 2.c). The teacher is queried a total of � times. The
train classifier subroutine uses the labeled data as training, as well as the model ( � ) learned in a
previous iteration, allowing for the case of incremental training (Domeniconi and Gunopulos, 2001)
or the case when the model may be initialized by prior knowledge (Wu and Srihari, 2004).

We will also consider the variant in which instances are picked uniformly at random in all
iterations, which we call random sampling (it is equivalent to regular supervised learning on a
random sample of data). In the pseudo-code in Figure 1, random sampling corresponds to the case
when 9�&)9 � Y 9�Z+E\[]� .

2.1 Our Proposal: Feature Feedback and Instance Feedback in Tandem

In this paper we propose to extend the traditional active learning framework to engage the teacher in
providing feedback on features in addition to instances. A realization of this idea is system 2 shown
in Figure 2, where the active learner not only queries the teacher on an informative document, but
also presents a list of ^ features for the teacher to judge (step 2.d) at each iteration. The simplest
implementation of such a system can consist of one where ^ 	 7 �_7 (the length of the document� ), and where the user is simply asked to highlight relevant words or phrases (features) or passages
while reading the document in order to label the document (step 2b), akin to the system in the
paper by Croft and Das (1990). In our experiments, individual features are presented to the user for
selection. Section 6.3 provides the details of our method.

In our proposed system the teacher is asked two types of questions: (1) membership queries
and (2) questions about the relevance of features. A relevant feature is highly likely to help dis-
criminate the positive class from the negative class. In this paper we aim to determine whether a
human teacher can answer the latter type of question sufficiently effectively so that active learn-
ing is accelerated significantly. A human and a classifier probably use very different processes to
categorize instances. A human may use her understanding of the sentences within the document,
which probably involves some reasoning and use of knowledge, in order to make the categorization
decision, while a (statistical) classifier, certainly of the kind that we use in this paper, simply uses
patterns of occurrences of the features (phrases). Therefore, it is not clear whether a human teacher
can considerably accelerate the training of a statistical classifier, beyond simple active learning, by
providing feedback on features.

Before we address that issue, we determine whether feature feedback can accelerate active learn-
ing in an idealized setting. We seek to get a sense of the room for improvement. We will then exam-
ine how actual human teachers can approximate this ideal. Towards this goal we define a (feature)
oracle. We use the oracle to obtain an upper bound on the performance of our proposed two-tiered
approach. The oracle knows the correct answer needed by the learning algorithm. For example the
word ct is a highly relevant feature for classifying Reuters news articles on the earnings category
and our oracle would be able to determine that this feature is relevant when asked. However, a
teacher (human) who did not understand that ct stood for cents may not be able to identify ct as
relevant (we will see this exact example in Section 6.1). Therefore, the oracle and teacher may
differ in their answers to questions about features, that is, questions of type (2) above. We assume
that the oracle and the teacher always agree on the labels of documents that is, questions of type (1)
above. After showing the usefulness of oracle feature selection, we will then show that humans can
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emulate the oracle for feature feedback to an extent that results in significant improvements over
traditional active learning.

2.2 Extent of Speed Up Possible: Oracle Experiments

We perform two types of experiments with the oracle. In the first kind, the oracle, knowing the
allotted time � , picks the best subset of features to improve, as much as possible, the performance of
active learning. The procedure is shown in Figure 3. In Figure 3, the Incorporate Feature Feedback
subroutine is called to initialize the model. When System 3 is used with a user instead of the oracle
it is equivalent to a scenario where prior knowledge is used to initialize the classifier (Schapire et al.,
2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones, 2005). In Section 3.4 we describe how
this oracle is approximated in our experiments.

Use of Feature Feedback Before Active Learning

Input: � (Total number of feedback iterations), � (Pool of unlabeled instances), init size (number
of random feedback iterations)
Output: � � (Model)

�
	�� ; �� 	 � ; �� 	 NULL;
1.a. 1FR � � ;<;<; ��R#S > = Feature Selection(�` )

b. Oracle selects 1FR � � ;<; ��R
T >\V 1FR
�!� ;<;<; ��RGS >
2.Incorporate Feature Feedback( �a , 1FR
�!� ;<;<; ��RUT > )
3. While ��� init size

a. ��� � ��� � � =Instance Selection( � ��� � , � ��� � ��"-$2&)(2*-,/.
b. Oracle assigns label 0O� to ���
c. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
d. �)@A@

4. While ��� �
a. ��� � ��� � � =Instance Selection( � ��� � , � ��� � ��C6&)D8EF" � $'9�&G.
b. Oracle assigns label 0O� to ���
c. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
d. �)@A@

Return �H�

Instance Selection

Teacher/
Oracle

M

Feature Selection M

Steps 1,2

t<= T

Step 3,4

Figure 3: An active learning system where feature selection is done before instance selection (Sys-
tem 3). This is one of the two set-ups used in our oracle experiments described in Section
2.2. The second set-up is shown in Figure 4.

The second type of experiment is a slight variation designed to isolate the effect of oracle feature
selection on example selection versus model selection during active learning. In these experiments,
active learning proceeds normally with all the features available, but after all the instances are picked
(after � iterations), the best set of b features that improve the resulting trained classifier the most
are picked and the resulting performance is reported. This is shown schematically and with pseudo-
code in Figure 4. We note that even when starting with the same initial set of labeled instances,
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the classifiers learned during active learning, hyperplanes in our case, in these two systems may
be different as they are learned in different spaces (using different feature subset sizes). Besides,
the set of labeled instances is small, so the learning algorithm may not be able to find the best
“unique” hyperplane. In turn, the instances picked subsequently during active learning may differ
substantially as both the spaces the instances reside in and the learned classifiers may be different.
The classifier learned in the feature reduced space may have better accuracy or lead to better choice
of instances to label during active learning, though this is not guaranteed or the benefits may be
negligible. In short, the trajectory of the active learning process, that is, the instances labeled and
classifiers learned, can be different in the two regimes, which may lead to substantially different
active learning performance. In Section 5 we provide the details of these experiments.

Systems 3 and 4 can also be used with a teacher (a human) instead of an oracle. For an actual
use in practice, we prefer an approach that combines feature selection and instance selection (e.g.,
as proposed in Section 2.1) because it also allows the system to benefit from the increase in the
knowledge of the teacher or the process may help remind the teacher about the usefulness of features
as she reads the documents. For example, the teacher who did not know that ct stood for cents may
realize that the word is indeed relevant upon reading documents containing the term. We will discuss
these related approaches in Section 7.

3. Implementation
In this section we give implementation details for our experiments. While our approach is applicable
to a variety of machine learning algorithms and feature selection approaches, we give the details of
our implementation. We use Support Vector Machines (SVMs) as the machine learned classifier,
uncertainty sampling as our approach to active learning and information gain as the feature selection
technique. We also give details on how we construct the approximate feature oracle.

3.1 Classifier: Support Vector Machines
We use support vector machines (SVMs) in our experiments (the model � is a Support Vector Ma-
chine (SVM)) (Joachims, 1998). An SVM learning algorithm tries to find a hyperplane of maximum
margin that separates the data into one of two classes cd0�e_1+f � � @��%> . . A linear SVM is a binary
classifier given as ^#c��g. 	hY 9�i'&
cdj_k`� @ml .�� (1)

where j is the vector of weights and l is a threshold, both learned by the SVM learning algorithm.
SVMs are considered to be state-of-the-art classifiers in the domains that we described in Sec-

tion 4.1 and have been found to be fairly robust even in the presence of many redundant and irrele-
vant features (Brank et al., 2002; Rose et al., 2002.). Our SVM implementation uses the LibSVM
toolkit (Chang and Lin).

3.2 Active Learning: Uncertainty Sampling
Uncertainty sampling (Lewis and Catlett, 1994) is a type of active learning in which the instance
that the teacher is queried on is the unlabeled instance that the classifier is most uncertain about.
In the case of a naive Bayes classifier, this is the instance which is almost equally likely to be in
either of the two classes in a binary classification setting. When the classifier is an SVM, unlabeled
instances closest to the margin are chosen as queries (Schohn and Cohn, 2000; Tong and Koller,
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Use of Feature Feedback After Active Learning

Input: � (Total number of feedback iterations), � (Pool of unlabeled instances, init size (number
of random feedback iterations)
Output: ��� (Model)

�
	�� ; �� 	 � ; �� 	 NULL;
1. While ��� init size

a. � � = Instance Selection( �  , � ��� � ��"-$'&)(+*-,/.
b. Oracle assigns label 0O� to ���
c. ��� = train classifier( 12���435��063��87 9 	:�-;<;<;=�?> , ����� � )
c. �)@A@

2. While ��� �
a. ��� � ��� � � = Instance Selection( � ��� � , � ��� � ��9�& YF� $'&)D8E-.
b. Oracle assigns label 0O� to ���
c. � � = train classifier( 12��� 3 ��0 3 �87 9 	:�-;<;<;=�?> , � ��� � )
d. �)@A@

3. a. 1FR � � ;<;<; ��R#S > = Feature Selection( ��� , �
� )
b. Oracle selects 1FR � � ;<; ��R#T >\V 1FR#�!� ;<;<; ��R#S >

4. Incorporate Feature Feedback( �B� , 1FR#�-� ;<;<; ��RUT > )
Return �H�

Instance SelectionTeacher/
Oracle

 M

Feature Selection   M

t<=T

Step 1,2

Step 4,5

Figure 4: An active learning system where feature selection is done after instance selection (System
4). This is one of the two set-ups used in our oracle experiments described in Section 2.2.
The first set-up is shown in Figure 3.

2002). This results in the version space being split approximately in half each time an instance is
queried. We use a pool size of 500 in our experiments, such that for each instance selection, we look
at a new random sample of 500 instances from the unlabeled data. All our methods start out with 2
randomly picked instances, one in the positive class and one in the negative class. Each subsequent
instance is picked through uncertainty sampling.

3.3 Feature Selection: Information Gain

We could have chosen any one of several methods for the ordering of features (Sebastiani, 2002;
Brank et al., 2002). Information gain is a common measure for ranking features and has been found
to be quite effective (Sebastiani, 2002; Brank et al., 2002), and is easy and quick to compute.

Information gain is given as:

npo 	 q
rMsut � �?v wx�zy

q
{ s-t |v �zy

} cdD!��~ .+���u� } cdD%��~ .} cdD!. } cd~ . (2)
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where D denotes the class label (+1 or -1) from section 3.1, and ~ is 0 or 1 indicating the presence
or absence of a feature respectively. We used information gain wherever we needed to do feature
selection.

3.4 Construction of the Approximate Feature Oracle
The (feature) oracle in our experiments has access to the labels of all documents in the data-set
(hence the name oracle) and uses this information to return a ranked list of features sorted in de-
creasing order of importance. We use information gain for feature ranking since it is easy to com-
pute, especially with a large number of training instances. Other feature selection methods (e.g.,
forward selection) may somewhat increase our upper bound estimates of usefulness of oracle fea-
ture feedback. Such improvements will further motivate the idea of using feature feedback, but we
don’t expect the improvements to be very high. In our oracle experiments, we cut off the ranked
list (therefore obtaining a feature subset) at the point that yields the highest average active learning
performance. The next section describes our experiments and performance measures.

4. Experimental Set Up
We will now describe our datasets and our data collection methodology for experiments which use
teacher feedback on features.2 We then describe our evaluation framework.

4.1 Data Sets
Our test bed for this paper comes from three domains. The first dataset consists of the 10 most
frequent classes from the Reuters-21578 corpus (Rose et al., 2002.). The 12,902 documents are
Reuters news articles categorized based on topics such as earnings and acquisitions. The Reuters
corpus is a standard benchmark for text categorization. The second corpus is the 20-Newsgroups
dataset collected by Lang (1995). It has 20,000 documents which are postings on 20 Usenet news-
groups. This is a slightly harder problem because it has a large vocabulary compared to the Reuters
corpus (news articles tend to be more formal and terse) and it has many documents in each category
which are tangentially related to the topic. The topics reside in a hierarchy with broader topics like
sports and computers at the top level which are further divided into narrower subdivisions. For ex-
ample, sports encompasses more focused groups like baseball and hockey. There are 20 categories
at the lowest level of the hierarchy.

The third corpus is the TDT3 corpus (Allan, 2002) . We used 10 topics from the TDT3 corpus
which has 67,111 documents in 3 languages from both broadcast and news-wire sources. The
Linguistic Data Consortium (LDC) provides the output of an automatic speech recognizer (ASR) for
the broadcast news sources. Similarly they provide the machine translations of all documents that
are not originally in English. We use the ASR and machine translated documents in our experiments.
The noise in the ASR and machine translation output makes the TDT corpus particularly difficult
to work with. The topics in the TDT corpus are based on news events. Thus, hurricane Mitch
and hurricane George would be two different topics and developing a classifier to separate the two
classes is seemingly a more difficult problem. The two classes would have a lot of common words
especially with regard to lives lost, rescue operations etc. For example, the words storm and damage
each respectively occur in 50% and 27% of the documents on hurricane Mitch and in 75% and

2. The datasets have been made available at http://ciir.cs.umass.edu/˜hema/data/jmlr2006/.
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54% of the documents on hurricane George. These common words are probably useful to detect a
generic topic like hurricane but are not that useful in discriminating hurricane Mitch from hurricane
George. However, we think it would be fairly trivial for a human to point out Mitch and George
as two keywords of importance which could then accelerate learning. The word Mitch occurs in
42% documents on hurricane Mitch and in 0 documents on hurricane George. Similarly, the word
George appears in 0.05% documents on the topic of hurricane Mitch and in 88% of the documents
on hurricane George.

For all three corpora we consider each topic as a one-versus-rest classification problem, giving
us a total of 40 such problems listed in Appendix A. We also pick two pairs of easily confusable
classes from the 20-Newsgroups domain to obtain two binary classification problems viz., baseball
vs hockey and automobiles vs motorcycles. In all we have 42 classification problems. As features
we use words, bi-grams and trigrams obtained after stopping and stemming with the Porter stemmer
(Porter, 1980) in the Rainbow toolkit (McCallum, 1996).

4.2 Data for whether humans can emulate the oracle

We picked 5 classification problems which we thought were perceptible to a non-expert and also
represented the broad spectrum of problems from our set of 42 classification problems. We took the
two binary classification problems and from the remaining 40 one-versus-rest problems we chose
three (earnings, hurricane Mitch and talk.politics.mideast). For a given classification problem we
took the top 20 features as ranked by information gain on the entire labeled set. We randomly mixed
these with features which are much lower in the ranked list. We showed each user one feature at a
time and gave them two options – relevant and not-relevant/don’t know. A feature is relevant if it
helps discriminate the positive or the negative class. We measured the time it took the user to label
each feature. We did not show the user all the features as a list, though this may be easier, as lists
provide some context and serve as a summary. Hence we expect that our method provides an upper
bound on the time it takes a user to judge a feature. The instructions given to the annotator are given
in Appendix B.

Similarly, we obtain judgments on fifteen documents in each of five categories (see Appendix
C). In this case we gave the user three choices – Class 1, Class 2, Don’t know. We randomly sampled
documents such that at least 5 documents belonged to each class. We have complete judgments on
all the documents for all three datasets. The main purpose of obtaining document judgments was to
determine how much time it would take a person to judge documents. We compare the time it takes
a user to judge a feature with the time it takes a user to judge a document. We measure the precision
and recall of the user’s ability to label features. We ask the user to first label the features and then
documents, so that the feature labeling process receives no benefit due to the fact that the user has
viewed relevant documents. In the learning process we have proposed, though, the user would be
labeling documents and features simultaneously, so the user would indeed be influenced by the
documents she reads. Hence, we expect that the feature labels we obtained by our experimental
method are worse in terms of precision and recall than the real setting. We could in practice ask
users to highlight terms as they read documents. Experiments in this direction have been conducted
in information retrieval (Croft and Das, 1990).

Our users (participants) were six graduate students and two employees of an Information Tech-
nology company, none of whom were authors of this paper. Of the graduate students, five were in
computer science and one from public health. All our users were familiar with the use of computers.
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Five users understood the problem of document classification but none had worked with these cor-
pora. One of our users was not a native speaker of English. The topics were distributed randomly,
and without considering user expertise, so that each user got an average of 2 to 3 topics. There were
overlapping topics between users such that each topic was labeled by 2 to 3 users on average. A
feedback form asking the users some questions about the difficulty of the task was handed out at the
end (see Appendix D).

4.3 Evaluation
The deficiency measure was proposed by Baram et al. (2003) as a measure of the speed of an active
learning algorithm, useful for comparing different active learning algorithms. Baram et al. defined
deficiency in terms of accuracy. Accuracy is a reasonable measure of performance when the positive
class is a sizable portion of the total. Since this is not the case for all the classification problems we
have chosen, we modify the definition of deficiency, and define it in terms of the R � score (harmonic
mean of precision and recall). For deficiency a lower value is better. As we also report on the R �
scores, for which higher values are better, for consistency and easier interpretation of our charts and
tables we define efficiency 	�� f deficiency. Efficiency has a range from 0 to 1, and a larger value
indicates a faster rate of learning. Thus, in all our reports higher values are better.

Let R � ��c RAND . be the average R � achieved by an algorithm when it is trained on � randomly
picked instances and R � � c ACT . be the average R � obtained using � actively picked instances.

Efficiency, ��� is defined as:

� � 	�� f � � ���O� cdR ��� c RAND .Uf�R � ��c ACT .M.
� � ���O� cdR ��� c RAND .�f�R � ��c RAND .M. (3)

R � � c RAND . is the R � obtained with a large number ( X ) of randomly picked instances. The
value R �F� c RAND . represents the performance of a classifier with a large amount of training data,
and can be considered the optimal performance under supervised learning. With large amounts of
training data, we expect the performance of a classifier trained using active learning to be about the
same as a classifier trained using random sampling. However, we would like active learning to ap-
proach this level as quickly as possible. The metric therefore takes into consideration how far the per-
formance is from the optimal performance by computing the difference R �+� c RAND .2f�R � ��c ACT .
and R � � c RAND .`fmR � � c RAND . . The metric compares this difference when � documents have
been actively picked to the difference when � documents have been randomly picked for increasing
number of training documents � .

Since we are concerned with the beginning of the learning curve, we stop after � 	��+� number
of documents have been sampled. For expedience, we did not measure performance at every point
from 2 to 42 labeled documents, but compute the summation at discrete intervals, measuring R �
after each additional five documents have been labeled: ��	�� �5�2� ��� � � � ;<;<;=�+� . For this paper
we take X 	��8�u�u� , that is, we consider the optimal random-learning performance to be attained
after the classifier has seen 1000 labeled instances. In our experiments R � ��c�k+. is the average R �
computed over 10 trials. In addition to efficiency we report R � � for some values of � .

To understand the intuition behind efficiency, we can draw the active learning curve by plottingR � ��c ACT . for increasing values of � , as shown in Figure 5(a). Similarly we can draw the random
learning curve by measuring R � ��c RAND . for increasing values of � . R �%� is a straight line repre-
senting the best achievable performance. Then efficiency is one minus the ratio of the solid colored
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area to the spotted area. The higher the efficiency, the better the active learning algorithm. We aim
to maximize both efficiency and R � . In some of our experiments we obtain efficiencies exceeding
1. This is due to using a finite X : it is possible that a classifier produced by active learning on 42
or fewer instances may do better than a classifier trained on a random sample of a 1000 instances.
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(b) The best feature set size increases as the training data
increases.

Figure 5: The figure on the left (a) illustrates efficiency, the performance metric which captures
rate of learning. The figure on the right illustrates the learning surface. The plot is a
measure of R � as a function of the number of features and training documents. The
dotted line traces the region of maximum R � . With few training documents, aggressive
feature selection (few features) are needed to maintain high accuracy. The thick dark
band illustrates traditional active learning.

5. Results: Experiments with an Oracle
In this section we seek the answer to the following questions:

k Can feature feedback significantly boost active learning performance?

k Should we use feature feedback during the entire active learning process (both instance selec-
tion, and model selection) or only for model selection?

To measure how much gain we can get from feature feedback we can measure the impact of the
oracle (which has knowledge of the best set of features) on active learning. This gives us an upper
bound on how useful feature feedback is for active learning. Then in the next section we go on to
measure the extent to which humans can emulate the oracle.

We will use systems 3 and 4 (described in Section 2.2) to help understand the answers to the
above questions.

5.1 Improvements to Active Learning with Feature Selection
Following the algorithm for system 3 (see Section 2.2, Figure 3), let ^ 	 K (the total number of
features) and let us assume that the oracle selects the b most important features (by information
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�
�z�!��� � ¡£¢5¤��
ACT ¥ � � ¡£¢5�¦�F�

ACT ¥ � � ¡£¢8§d¨¦¨�¨
Dataset

� � © � � ª � � «¬ g®  © ¯®  ª �®  «
Reuters 0.59 0.68 11179.3 0.36 0.48 8481.1 0.580 0.66 11851.6 0.73
20 NG 0.40 0.66 41.5 0.07 0.22 48.3 0.21 0.29 487.1 0.45
TDT 0.26 0.34 1275.7 0.19 0.29 11288 0.28 0.41 10416.1 0.75

Bas vs Hock 0.29 0.55 25 0.59 0.70 25 0.78 0.83 200 0.96
Auto vs Mot. 0.68 0.32 125 0.43 0.72 62 0.76 0.86 31 0.90

Table 1: Improvements in efficiency, R �%° and R � �M� using an oracle to select the most important
features (Figure 3). We show results for each metric at K (total number of features for
a particular dataset) and at feature set sizes for which the scores are maximized ( & , ,
and ± for ��²�� , R ° , and RG�M� respectively). For each of the three metrics, figures in bold
are statistically significant improvements over uncertainty sampling using all features (the
corresponding columns with feature set size of N). We see that with only 7 documents
labeled ( R � ° ) the optimal number of features is smaller (8481.1 on average), while with
more documents labeled, (22 documents labeled for R � �M� ) the optimal number of features
is larger (11851.6 on average). When 1000 documents are labeled ( R � �¦MM ) using the entire
feature set leads to better scores with the R � measure. This suggests that our best active-
learning algorithm would adjust the feature set size according to the number of training
documents available.

gain) in step 1.b, which is used to initialize the model in step 2. Random sampling (step 3.a), in this
particular implementation, does not use any of the feature information or the initial model. Then in
step 3.c, we prune the dataset by retaining only the chosen b features for each instance. We now
perform active learning on the instances in this reduced feature space (step 4). We evaluate these
experiments at many points in the two-dimensional space of number of features b versus number
of labeled documents � by measuring the F1 score: R � � c ACT �5b6. . We can similarly measure per-
formance in the reduced feature space when instances are picked randomly. Thus we can compute
efficiency in the reduced feature space as �³��c�b6. . When ^ 	 b 	 K the algorithm reduces to
traditional active learning (Figure 1).

Figure 5(b) shows a plot of R � ��c ACT �5b6. for different values of the number of features b and
number of labeled training instances � , for the earnings category in Reuters. The dotted curve traces
the maximum RU� for each value of � . The I , ´ and Z axes denote b , � and R � �?c ACT �5b6. respectively.
The number of labeled training instances � ranges from 2 to 42 in increments of 5. The number
of features used for classification b has values from µuµ'�?µ �-¶ (all features), µuµuµ �-¶ · � , µuµuµ �-¶ · � toµ � . The dark band represents the case when all features are used. This method of learning in one
dimension is representative of traditional active learning. Clearly when the number of documents is
few, performance is better when there is a smaller number of features. As the number of documents
increases the number of features needed to maintain high accuracy increases. From the figure it is
obvious that we can get a big boost in accuracy by starting with fewer features and then increasing
the complexity of the model as the number of labeled documents increase.

Table 1 captures the behavior of all the problems in the Reuters corpus when there is an oracle
to do the feature selection. The second column ( b 	 K ) in Table 1 shows the efficiency obtained
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using uncertainty sampling and all ( K ) features. The third column ( b 	 & ) indicates the average
efficiency obtained using uncertainty sampling and a reduced subset of features. The feature set
size & at which this efficiency is attained is shown in column four. For each classification problem,
we identify the feature set size which optimizes the efficiency, that is, optimizes the rate at which
classification performance under active learning approaches learning with all of the data. This
optimal feature set size for active learning & is given by

& 	 argmax T �¸²��uc�b6.
Figure 6 shows the efficiencies at �£²��ucdK�. and ��²��-cd&G. for the individual problems in the three

corpora. In many cases, �³²��-cdK�. is much less than �¹²��ucd&G. .
Column 5 ( b 	 K ) in Table 1 shows the value of R �-° c ACT ��K�. : the F1 score with seven

instances selected using active learning, when all features are used. Column 6 shows the averageR ��° c ACT ��,/. using a reduced feature subset. As for efficiency the best feature subset size ( , ) for
each classification problem is obtained as the feature subset size at which R �+° c ACT �5b6. is maxi-
mum. For example in Figure 5(b) at 7 instances the best R � is obtained with 512 features. Figure 7
shows the values of R �F° computed using all ( K ) features and using a reduced subset of ( , ) features
for individual problems.

Columns 7, 8, and 9 in Table 1 show similar results for R � �M� c ACT �5b6. with the best feature
subset size at �
	h�u� being denoted by ± . The values for individual problems is illustrated in Figure
8. The last column shows R � �¦MMuc RAND . .

All 42 of our classification problems exhibit behavior as in Figure 5(b). For all classification
problems, & , , and ± are less than the maximum number of features. Also, for 31 of 42 cases, � ± (that is, the number of features optimal for 7 labeled instances, , is less than the number
of features optimal for 22 labeled instances, ± ) meaning that as the number of labeled instances ( � )
increases, the complexity of the classifier also needs to increase. For 20-Newsgroups, for all classes
we observe that efficiency, R �%° and R � �M� are best at very small feature subset sizes. For Reuters
and TDT there are classes for which a large number of features become important very early (for
example: trade, Bin Laden indictment, NBA labor disputes).

5.2 Feature Selection for Instance Selection or Model Selection
As mentioned in Section 2.2 the difference between systems 3 and 4 is in that feature selection
precedes active learning in the former, and the best feature subset is picked in a retrospective manner,
while it follows active learning in the latter. The two systems when used with oracle feature selection
will help us understand the extent to which oracle feedback aids different aspects of the active
learning process. Figure 9 compares the results of using system 4 and system 3 on the Reuters
corpus.

There is hardly any difference between systems 3 and 4, especially on R �+° . All other datasets
exhibit the same behavior. The R � �M� and � ²�� values are slightly better for the method that does
feature selection before active learning (system 3) but it is not significantly different (determined
using a t-test at the 0.05 level of confidence) from the method where feature pruning is done after
instance selection (system 4). Thus, our experimental results suggest there is some benefit for
instance selection but most of the benefit from oracle feature selection comes from improving the
model learned (model selection).
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(b) TDT
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Figure 6: Improvements in efficiency using an oracle to select the most important features. For
each problem we show efficiency at K (total number of features for a particular dataset)
on the right and efficiency at the feature set sizes for which the efficiency is maximized
( & ) on the left. The class keys are given in Appendix A.
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(a) Reuters

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Category

F1
7

 

 
F17(N)
F17(m)

(b) TDT
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Figure 7: Improvements in R � ° using an oracle to select the most important features. For each
problem we show R �!° at K (total number of features for a particular dataset) on the
left and R �F° at the feature set sizes for which the R �-° is maximized ( , ) on the right.
Remember, the objective is to maximize R �%° . The class keys are given in Appendix A.
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(b) TDT
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Figure 8: Improvements in R � �M� using an oracle to select the most important features. For each
problem we show R � �M� at K (total number of features for a particular dataset) on the
right and R � �M� at the feature set sizes for which the R � �M� is maximized (± ). Remember
that the objective is to maximize R � �M� . The class keys are given in Appendix A.
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Figure 9: R � ° , R � �M� and efficiency � ²�� for the Reuters corpus when feature selection is done be-
fore active learning (system 3) and when feature selection is done after active learning
(system 4).
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5.3 Discussion: Why Does Feature Selection Help?
Intuitively, with limited labeled data, there is little evidence to prefer one feature over another, so
the learner has to spread the feature weights more or less evenly on many features. In other words,
the learner has to remain conservative. Feature/dimension reduction by the oracle allows the learner
to “focus” on dimensions that matter, rather than being overwhelmed with numerous dimensions
right at the outset of learning. Oracle feature reduction allows the learner to assign higher weights
to fewer features. This tends to improve accuracy, since the oracle selected features are the actual
most predictive features. Oracle feature reduction may also improve instance selection as the learner
obtains instances to query that are important for finding better weights on the features that matter. As
the number of labeled instances increases, feature selection becomes less important, as the learning
algorithm becomes better capable of finding the discriminating hyperplane (feature weights) on its
own. We experimented with filter based methods for feature selection, which did not work very
well (we got tiny or no improvements). This is expected given such limited training set sizes, and
is consistent with most previous findings (Sebastiani, 2002). Next we determine if humans can
identify these important features.

6. Results: Experiments with a Human (Teacher)
Consider our introductory example of the editor who was looking for training instances for the
topic hurricane Mitch. From a human perspective the words hurricane, Mitch etc may be important
features in documents discussing this topic. Given a large number of documents labeled as on-topic
and off-topic, and given a classifier trained on these documents, the classifier may also find these
features to be most relevant. With little labeled data (say 2 labeled instances) the classifier may not
be able to determine the discriminating features. While in general in machine learning the source
of labels is not important to us, in active learning scenarios in which we expect the labels to come
from humans we have valid questions to pose:

1. Can humans label features as well as documents? In other words are features that are impor-
tant to the classifier perceptible to a human?

2. If the feature labels people provide are imperfect, is the feedback still beneficial to active
learning?

We address the first question in the following section. Our concern in this paper is asking people
to give feedback on features, or word n-grams, as well as entire documents. We may expect this to
be more efficient, since documents are often long and may contain redundant or irrelevant content,
and results from our oracle experiments indicate great potential in doing feature selection. We
then move on to discuss a real system which employs a two-tiered approach of document feedback
and feature feedback like the system in Figure 2 which we evaluate using a simulation: we obtain
feedback on features and documents apriori, and use the judgments so obtained to measure the
effectiveness of our approach. We employed this approach rather than one where an actual user
labels features and documents in tandem because our approach allows us to run many repeated
trials of our experiments, enabling us to do significance testing. Given that we have demonstrated
the effectiveness of our algorithm, we reserve a more realistic evaluation with a true human in the
loop for future work.
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Class Precision Recall Avg. Time (secs) kappa
Problem Hum. @50 Hum. @50 Feat. Docs
baseball vs hockey 0.42 0.30 0.70 0.30 2.83 12.60 0.503
auto vs motorcycle 0.54 0.25 0.81 0.25 3.56 19.84 0.741
earnings 0.53 0.20 0.66 0.25 2.97 13.00 0.495
talk.politics.mideast 0.68 0.35 0.55 0.35 2.38 12.93 0.801
hurricane Mitch 0.72 0.65 0.56 0.65 2.38 13.19 0.857
Average 0.580 0.35 0.65 0.38 2.82 14.31 0.68

Table 2: Ability of users to identify important features. Precision and Recall against an oracle,
of users (Hum.) and an active learner which has seen 50 documents (@50). Note that
precision and recall denote the ability of the user to recognize the oracle features and are
not measures of classification accuracy. Average labeling times for features and documents
are also shown. All numbers are averaged over users.

6.1 Can Humans Emulate the Oracle?
We evaluated user feature labeling by calculating their average precision and recall at identifying
the top 20 features as ranked by an oracle using information gain on the entire labeled set. Table
2 shows these results. For comparison we have also provided the precision and recall (against the
same oracle ranking of top 20 features) obtained using 50 labeled instances (picked using uncer-
tainty sampling) denoted by @50. Precision and recall of our participants is high, supporting our
hypothesis that features that a classifier finds to be relevant after seeing a large number of labeled
instances are obvious to a human after seeing little or no labeled data (the latter case being true
of our experiments). Additionally the precision and recall @50 is significantly lower than that of
humans, indicating that a classifier like an SVM needs to see much more data before it can find
discriminatory features.

Table 2 also shows the times taken for labeling features and documents. On average humans
take 5 times longer to label one document than to label one feature. Note that features may be
even easier to label if they are shown in context – as lists, with relevant passages etc. We measured
whether document length influences document labeling time. We found the two to be correlated
by " 	:�p;À� ¶uÁ which indicates a small increase in time for a large increase in length. The standard
deviations for precision and recall are 0.14 and 0.15 respectively. Different users vary significantly
in precision, recall and the total number of features labeled relevant. From the post-labeling survey
we are inclined to believe that this is due to individual caution exercised during the labeling process.

We also measure the extent to which our users tend to agree with each other about the importance
of features. For this we use the kappa statistic (Cohen, 1960) which is a measure that quantifies the
agreement between annotators that independently classify a set of entities (in our case the features)
into classes (relevant versus non-relevant/don’t know). Kappa is given by:

kappa 	 cÂ±PÃÄfÅ± r .¦·'c � f�± r . (4)

Where ±PÃ is the observed proportion of agreement and ± r is the agreement due to chance (Cohen,
1960; Landis and Koch, 1977). Landis and Koch (1977) provide a table giving guidelines about how
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to interpret kappa values. We find a value of 0.68 to be the average kappa across the five categories
in our user study. According to Landis and Koch (1977) this indicates substantial agreement.

We obtained judgments on a handful of documents for each user. We used those judgments to
measure time. Some of our users had difficulty judging documents. For example, for the earnings
category, one of our users had very low agreement with the true Reuters categories. This person did
not have a finance background and could not distinguish well between earnings and acquisitions,
often confusing the two. But this user did quite a good job of identifying useful features. She
missed only 6 of 20 of the relevant features and had only 5 false alarms. The features that she
marked relevant, when used in the human-in-the-loop algorithm resulted in an efficiency of 0.29.
This is still an improvement over traditional uncertainty sampling which has a efficiency of 0.10.
These results can be explained by looking at the question posed to the annotator. When it came to
features, the question was on the discriminative power of the feature. Hence a user did not have to
determine whether the words shares was pertinent to earnings or not but rather she only needed to
indicate whether the word was likely to be discriminatory. Additionally, one of our users suggested
that terms shown in context would have carried more meaning. The user said that she did not realize
the term ct stood for cents until she read the documents. But since she was made to judge terms
before documents this user’s judgment had marked the term ct as non-relevant/don’t know.

Some of the highlights of the post-labeling survey are as follows. On average users found the
ease of labeling features to be 3.8 (where 0 is most difficult and 5 is very easy) and documents 4.2. In
general users with poor prior knowledge found the feature labeling process very hard. The average
expertise (5=expert) was 2.4, indicating that most users felt they had little domain knowledge for
the tasks they were assigned. We now proceed to see how to use features labeled as relevant by our
naive users in active learning.

6.2 Using Human Feature Feedback simultaneously with Document Feedback in Active
Learning

We saw in Section 5 that feature selection coupled with uncertainty sampling gives us big gains in
performance when there are few labeled instances. In Section 6.1 we saw that humans can discern
discriminative features with reasonable accuracy. We now describe our approach of applying term
and document level feedback simultaneously in active learning. In Section 2.2 we discussed the
possible cognitive advantages of an interleaved approach of feature selection and instance selection.
Additionally, we found that feature selection does not hurt uncertainty sampling and may aid it. In
the following section we describe an implementation for system 2.

6.3 Implementation
Following Figure 2, the features to be displayed to the user (in step 2.d.i) are the top ^ features
obtained by ordering the features by information gain. More specifically, we trained the SVM
classifier on these � labeled instances. Then to compute information gain, we used the 5 top ranked
(farthest from the margin on the positive side) documents from the unlabeled set in addition to
the � labeled documents. Using the unlabeled data for term level feedback is very common in
information retrieval and is called pseudo-relevance feedback (Salton, 1968). The user labels bÅÆ �
of the ^ features as relevant or discriminative (step 2.d.ii). If a user has labeled a feature in a
previous iteration, we don’t show the user that feature again (the top ^ are picked from the unlabeled
features). We set ^ to �8� in our experiments.
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We incorporate feature feedback (step 2.e) as follows. Let ÇYÈ	�Y � ;<;<;ÀY J be a vector containing
weights of relevant features. If a feature number 9 that is presented to the user is labeled as relevant
then we set Y 3 	 $ , otherwise Y 3 	hl , where $ and l are parameters of the system. For each � in the
labeled and unlabeled sets we multiply IO3 by Y 3 to get I6É3 . In other words, we scale all the features
that the user indicated as relevant by $ and the rest of the features by l . We set $ 	��8� and lÄ	�� . 3

By scaling the important features by $ we are forcing the classifier to assign higher weights to
these features. We demonstrate the intuition with the following example. Consider a linear SVM,K 	h� and 2 data points �Ê� 	 c � � � . and �4� 	 c � � � . with labels @�� and f � respectively. An SVM
trained on this input learns a classifier with j 	 cMf �p;ÀË ÁuÁ'� @£�p;ÀË ÁuÁ2. . Thus, both features are deemed
equally discriminative by the learned classifier. If feature 1 is indicated to be more discriminative
by our user, then by our method �ÌÉ� 	 c �8� � � . and �ÍÉ� 	 c �-� � � . and j¸É 	 c �p;Î�-� µ'��f �p;Î�u�-� µ2. , thus^ � is assigned a much higher weight in the learned classifier. Now, this is a “soft” version of the
feature selection mechanism of section 5. But in that case the oracle knew the ideal set of features.
Those experiments may be viewed as a special case where l³	Ï� . We expect that human feedback
is imperfect and we do not want to zero-out potentially relevant features.

6.4 Simulating User Feedback
We use the relevance judgments on features obtained as described in Section 6.1 to simulate the
user in each iteration. At each iteration of the algorithm, if a feature that is presented had been
marked by the user as relevant, in the relevance judgment experiments of the previous section, we
mark the value of that feature as 1 in the vector ÇY . The vector ÇY is noisier (less complete) than the
case where we would have obtained relevance judgments on features during the actual execution
of the algorithm. This is because in addition to mistakes made by the user, we lose out on those
features that the user might have considered relevant, had she been presented that feature when we
were collecting relevance judgments for a relatively small subset of features. In a real life scenario
this might correspond to the lazy user who labels few features as relevant and leaves some features
unlabeled in addition to making mistakes.

To make our experiments repeatable (to compute average performance and for convenience) we
simulate user interaction as follows. For each classification problem we maintain a list of features
that a user might have considered relevant had she been presented that feature. For these lists we
used the judgments obtained in Section 4.2. Thus for each of the 5 classification problems we had 2
or 3 such lists, one per user who judged that topic. For the 10 TDT topics we have topic descriptions
as provided by the LDC. These topic descriptions contain names of people, places and organizations
that are key players in this topic in addition to other keywords. We used the words in these topic
descriptions to be equal to the list of relevant features. Now, given these lists we can perform the
simulated HIL (human in the Loop) experiments for 15 classification problems. Figure 10 shows
the performance of the HIL experiments. Like before we report efficiency ( �\²�� ), the R � score
with 7 labeled documents ( R �!° ), and the R � score with 22 labeled documents ( R � �M� ) for each
of uncertainty sampling (Unc), oracle feature selection with uncertainty sampling (Ora) and the
Human in the Loop (HIL) algorithm. As a baseline we also report results for the case when the top
20 features as obtained by the information gain oracle are input to the simulated HIL experiments
(this represents what a user with 100% precision and recall would obtain by our method). The

3. We picked our algorithm’s parameters based on a quick test on 3 topics (baseball, earnings, and acquisitions) using
the oracle features of Section 5.
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oracle is (as expected) much better than plain uncertainty sampling, on all 3 measures, validating the
effectiveness of our proposed system Section 2.1. The performance of the HIL experiments is almost
as good as the oracle, indicating that user input (although imperfect) can help improve performance
significantly. The plot on the right is of R � ��c HIL . for hurricane Mitch. As a comparison R � ��c ACT .
is shown. The HIL values are much higher than for uncertainty sampling.

Dataset
� �¦� ¡£¢ ¤ ¡£¢ �¦�

Unc Ora HIL Unc Ora HIL Unc Ora HIL
Baseball 0.29 0.59 0.54 0.49 0.63 0.60 0.63 0.79 0.70
Earnings 0.10 0.36 0.36 0.61 0.79 0.73 0.80 0.85 0.86
Auto vs Motor 0.18 0.66 0.40 0.35 0.62 0.60 0.71 0.83 0.73
Hurr. Mitch 0.11 0.62 0.62 0.04 0.46 0.60 0.08 0.63 0.58
mideast 0.51 0.72 0.72 0.14 0.28 0.29 0.32 0.49 0.49
TDT (avg) 0.14 0.23 0.11 0.09 0.21 0.24 0.18 0.32 0.22

(a)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35  40  45

Uncertainty HIL Oracle

t

F1t

(b) The graph shows the learning curves for Hurricane Mitch (6th row of
the above table) with the x-axis being the number of labeled documents
and y-axis º`»QÐ HIL Ñ .

Figure 10: Improvements due to human feature selection. The R � ° and R � �M� scores in the table
show the points on the curves where 7 and 22 documents have been labeled. The differ-
ence between no feature feedback (Unc) and human-labeled features (HIL) is greatest
with few documents labeled, but persists up to 42 documents labeled.

When to stop asking for labels on both features and documents and switch entirely to documents
remains an area for future work. We provide some initial results in this regard. Consider that we ask
for both document and feature feedback up to Ò iterations and after that we only ask for document
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feedback. Figure 11 shows the active learning curves for different values of Ò for the hurricane
Mitch problem in the TDT corpus. The case when Ò 	�� represents traditional uncertainty sampling.
When Ò 	ÏË there is improvement over the case when Ò 	Ï� , and when Ò 	Ó�8� there is even more
improvement. Beyond Ò 	��8� there is little gain in obtaining feature feedback. It seems that relevant
features are usually spotted in very early iterations. We see similar behavior for other problems in
our domains. For the auto vs motorcycles problem, the user has been asked to label 75% of the
oracle features (averaged over multiple iterations and multiple users) at some point or the other.
The most informative words (as determined by the oracle) – car and bike are asked of the user in
very early iterations. The label for car is always (100% of the times) asked, and 70% of the time
the label for this word is asked to the user in the first iteration itself. This is closely followed by the
word bike which the user is queried about within the first 5 iterations 80% of the time. Most relevant
features are asked within 10 iterations which makes us believe that we can often stop feature level
feedback in around 10 iterations.
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Figure 11: Human Feature Selection for Hurricane Mitch for different amounts of feature feedback.
The legend indicates the number of iterations (Ò ) for which there was both feature and
document feedback, after which only document feedback was asked for. The line at the
bottom, labeled Ò 	B� corresponds to regular uncertainty sampling or the case when
feature feedback was asked for � iterations. The line corresponding to Ò 	:Ë iterations
is significantly better than when Ò 	Ô� . All other cases, Ò 	Ó�8� ... Ò 	Õ� � are clumped
at the top.

7. Related Work
Our work is related to a number of areas including query learning, active learning, use of (prior)
knowledge and feature selection in machine learning, term-relevance feedback in information re-
trieval, and human-computer interaction.

Term level feedback has been studied in information retrieval (Anick, 2003; Croft and Das,
1990; Belkin et al., 2001). Many participants in the TREC HARD track (Voorhees and Buckland,
2005) generate clarification forms for users to refine or disambiguate their query. Many of the
effective forms are composed of lists of terms and the user is asked to mark terms as relevant or not,
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and some have found that term level feedback is more effective than document level feedback (Diaz
and Allan, 2005). The TREC interactive task has focused on issues regarding the kinds of questions
that can be asked of the user. They find that users are happy to use interfaces which ask the user to
reformulate their queries through a list of suggested terms. They also find that users are willing to
mark both positive and negative terms (Belkin et al., 2001).

Our proposed method is an instance of query-based learning and an extension of standard
(“pool-based”) active learning which focuses on selective sampling of instances from a pool of
unlabeled data alone (Cohn et al., 1994). Although query-based learning can be very powerful in
theory (Angluin, 1992), arbitrary queries may be difficult to answer in practice (Baum and Lang,
1992). Hence the popularity of pool-based methods, and the motivation for studying the effective-
ness and ease of predictive feature identification by humans in our application area. To best of our
knowledge, all prior work on query learning and active learning focused on variants of membership
queries, that is, requesting the label of a possibly synthesized instance. Our work is unique in the
field of active learning as we extend the query model to include feature as well as document level
feedback.

Feature feedback may be viewed as the teacher providing evidence or an explanation for the
learner on the reasoning behind the labeling. The field of explanation-based learning, however,
concerns itself on a deductive rather than an inductive learning task, using one instance and a given
domain theory to generalize (Mitchell et al., 1986; DeJong and Mooney, 1986).

Feature selection can lead to improvements in the performance (accuracy) or in the space or time
efficiency of the classifier. When there are sufficient labeled instances, most state of the art learning
algorithms are able to distinguish the relevant features from the irrelevant ones (Brank et al., 2002).
Hence there is little improvement in performance with an additional feature selection component.
When there are few labeled instances, working with a small set of relevant features tends to be more
useful. This phenomenon has been referred to in statistics as the Hughes phenomenon (Hughes,
1968). Weight regularization may be viewed as a soft version of feature selection: for best per-
formance, in general the smaller the training set, the smaller the total weight that is allowed to be
spread over the features. Unfortunately, to do automatic feature selection well, we need sufficient
training data, leading to a chicken-and-egg problem. Fortunately, in document classification users
have the intuition to point out a small subset of useful features which would be beneficial when
there are few labeled instances.

Budgeted learning also works on identifying the predictive features during an active learning
setting, but in this case the feature values are unknown and there is a cost to finding each feature’s
value for each instance of interest (such as the outcome of blood test on an individual) (Lizotte et al.,
2003). That human prior knowledge can accelerate learning has been investigated by Pazzani and
Kibler (1992), but our work differs in techniques (they use prior knowledge to generate horn-clause
rules) and application domains. Beineke et al. (2004) use human prior knowledge of co-occurrence
of words, at feature generation time, to improve classification of product reviews. None of this
work, however, considers the use of prior knowledge in the active (sequential) learning setting.

Our study of the human factors (such as quality of feedback and costs) is also a major differen-
tiating theme between our work from previous work in incorporating prior knowledge for training.
Past work has not addressed this issue, or might have assumed experts in machine learning taking a
role in training the system (Schapire et al., 2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones,
2005). We only assume knowledge about the topic of interest. Our algorithmic techniques and the
studied modes of interaction also differ somewhat and are worth further comparison. Jones (2005)
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also used single feature-set labeling in the context of active learning: the user was queried on a
feature rather than the whole instance. The labeled feature was taken as a proxy for the label of any
instance containing that feature, so a single feature labeling potentially labeled many documents
(similar to the soft labeling technique discussed next). This was found to be more economical than
whole-instance labeling for some tasks. The instances in this work consisted of only two features (a
noun-phrase and a context), so labeling one feature is equivalent to labeling half an instance. Our
work differs in that our instances (documents) contain many features (words) and we combine both
feature labeling and document labeling. Our work also differs in that we use the labeled features for
feature selection and feature re-weighting, rather than as proxies for document labels.

Both Wu and Srihari (2004) and Schapire et al. (2002) assume that prior knowledge is given at
the outset which leads to a “soft” labeling of the unlabeled data. This extra labeling is incorporated
into training via modified boosting or SVM training. By soft labeling, we mean the extra labels,
generated via prior knowledge, are not certain and a method that uses such information may for
example assign low confidences to such labellings or lower the misclassification costs compared
to misclassification costs for instances labeled directly by a human. However, in our scheme the
user is labeling documents and features in an interactive and interleaved fashion. We expect that
our proposed interactive mode has an advantage over requesting prior knowledge from the outset,
as it may be easier for the user to identify or recall relevant features while labeling documents in
the collection and being presented with candidate features. Our method of scaling the dimensions
and training (without using the unlabeled data) has an advantage over soft labeling in situations
where one may not have access to much unlabeled data, for example in online tasks such as filtering
news streams and categorizing personal emails. Furthermore, we simplify the user’s task in that
our technique does not require the user to specify whether the feature is positively or negatively
correlated with the category, just whether the user thinks the feature is relevant or predictive. On the
other hand, in the presence of ample unlabeled data, soft labeling methods might more effectively
incorporate the information available in the unlabeled data. Both approaches require extra param-
eters specifying how much to scale the dimensions or the confidence or misclassification costs to
assign to the generated labellings, though some fixed parameter settings may work for most cases,
or automated methods could be designed.

The work of Godbole et al. (2004) emphasizes system issues and focuses on multi-class train-
ing rather than a careful analysis of effects of feature selection and human efficacy. Their pro-
posed method is attractive in that it treats features as single term documents that can be labeled by
humans, but they also study labeling features before documents (and only in an “oracle” setting,
without using actual human annotators). They do not observe much improvements using their par-
ticular method over standard active learning in the single domain (Reuters) they test on. Finally, we
mention another method of incorporating prior knowledge that has much similarity to our method
of differential scaling of dimensions: differential weightings of features in feature weight initial-
izations when using online methods such as Winnow. A better understanding of effective ways of
incorporating (prior) knowledge in various learning scenarios is a promising research direction.

8. Conclusions and Future Work

We have demonstrated experimentally that for learning with few labeled examples good (oracle-
based) feature selection is extremely useful. As the number of examples increases, the “vocabulary”
of the system, in other words, the effective feature set size for best performance, also needs to
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increase. A teacher, who may not necessarily be knowledgeable in machine learning, but has prior
knowledge on the relevance of the features, can help accelerate training the system by pointing out
the potentially important features for the system to focus on. We conducted a user study to see how
well naive users performed as compared to a feature oracle in the domain of text categorization.
Our technique weighted the features marked relevant by the users more than the other features. We
used our users’ outputs in realistically simulated human in the loop experiments and observed a
significant increase in learning performance with our techniques over plain active learning.

In summary, our contributions are:

1. We demonstrated that access to a feature importance oracle can improve performance (the R �
score) significantly over uncertainty sampling, even with as few as 7 examples labeled.

2. We found that even naive users can provide effective feedback on the most relevant features
(about 60% accuracy of the oracle in our experiments).

3. We measured the manual costs of relevance feedback on features versus labeling documents:
we found that feature feedback takes about 1/5th of the time taken by document labeling on
average.

4. We devised a method of simultaneously soliciting class labels and feature feedback that im-
proves classifier performance significantly over soliciting class labels alone.

Consider a user who is interested in training a personalized news filter that delivers news stories
on topics of their interest as and when they appear in the news. The user is probably willing to
engage in some form of interaction in order to train the system to better suit their need. Similarly
a user wanting to organize their e-mail into folders may be willing to train the e-mail filter as long
as training is not too time consuming. Both the news filter and the e-mail filter are document clas-
sification systems. The idea of using as few documents as possible for training classifiers has been
studied in semi-supervised learning and active learning. In this paper we extended the traditional
active learning setting which concerns the issue of minimal feedback and proposed an approach
where the user provides feedback on features as well as documents. We showed that such an ap-
proach has good potential in significantly decreasing the overall amount of interaction required for
training the system.

This paper points to three promising inter-related questions for further exploration. The first
question concerns what to ask from the user. In general, the active learner has to make decisions at
various time points during active learning regarding the choice of feedback. For example, whether
to ask for feedback on a document or on a feature, or even whether to stop asking questions all
together (ask nothing), appropriate for a scenario where no additional feedback is likely to improve
performance significantly. This involves some implicit or explicit assessment of the expected bene-
fits and costs of different kinds of feedback. Furthermore, there are alternate kinds of feedback that
are potentially useful – feedback on clusters of features for example. The second question involves
human computer interaction issues and seeks to explore how to translate what the learner needs to
know, into a question, or a user interface, that the human teacher can easily understand. In our case,
the learner asked the teacher labels on word features and documents, both of which required little
effort on the part of the teacher to understand what was being asked of him. Our subjects did in-
deed find labeling words without context a little hard, and suggested that context might have helped.
An attractive alternative or complementary method of soliciting feature feedback is asking users to
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highlight some relevant or predictive terms as they read a document. Experiments in this direction
have been conducted in information retrieval (Croft and Das, 1990). The third question is about the
choice of learning algorithms for effectively incorporating these alternate forms of feedback. We
explored one method in this paper and discussed alternatives in Section 7. Related to the above is
better understanding and quantifying the potential of active learning enhanced with feature feedback
as a function of various aspects of the learning problem, such as measures of the difficulty of the
category that one seeks to learn.
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Appendix A. Class Key
The class key for the Reuters corpus is given below:

1. earnings 2. acquisitions 3. money-fx 4. crude 5. trade 6. interest 7. wheat
8. corn 9. money supply 10. gold

The class key for the 20 Newsgroups corpus is given below:

1. alt.atheism 2. comp.graphics 3. comp.os.wind.misc 4. comp.sys.ibm.pc.hw
5. comp.sys.mac.hw 6. comp.windows.x 7. misc.forsale 8. rec.autos
9. rec.motorcycles 10. rec.sport.baseball 11. rec.sport.hockey 12. sci.crypt
13. sci.electronics 14. sci.med 15. sci.space 16. soc.rel.christian
17. talk.politics.guns 18. talk.politics.mideast 19. talk.politics.misc 20. talk.religion.misc

Similarly the class key for the TDT corpus is:

1. Cambodian government coalition 2. Hurricane Mitch 3. Pinochet Trial
4. Chukwu Octuplets 5. Bin Laden Indictment 6. NBA Labor Disputes
7. Congolese Rebels 8. APEC Summit Meeting 9. Anti-Doping Proposals
10. Car Bomb in Jerusalem

Appendix B. Instructions for annotating features
Class 1: Documents from the Usenet newsgroups that discuss baseball
Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of features one at a time. For each feature you will be
asked to determine whether it is relevant or not for the given classification problem. If it is relevant
to Class 1 or to Class 2, mark the radio button which says “Relevant”. If it is not relevant or you
don’t know whether the feature is relevant mark DONT KNOW correspondingly
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A feature is relevant if it helps discriminate between documents in Class 1 versus documents in
Class 2. Features are words, pairs of words (bi grams) and so on. Think of a bi gram as a pair of
words that may occur in close proximity to each other For every feature ask yourself the following
question: “Is this more likely to occur in a document in Class 1 as opposed to Class 2?”. If that is the
case mark the feature as relevant. If the reverse is true then again mark the feature as relevant. If the
feature is not really relevant, for example “banana” may make no sense in trying to find documents
in either class mark the “Not relevant/Don’t know” option. DO NOT use any resources(the web,
encyclopedias etc) to determine your answer. If you are not sure simply click the “Don’t Know”
option

The time between which you are shown a feature and you hit the submit button is timed. So do
not do anything else in this time. After you submit, A THANK YOU page is displayed. You may
take a break here before you proceed to the next feature.

To modify the last annotation use the browsers BACK button.
To begin annotating click here.

Appendix C. Instructions for annotating documents
Class 1: Documents from the Usenet newsgroups that discuss baseball
Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of documents one at a time. For each documents you will
be asked to determine whether it belongs to class 1 or class 2. You also have the option to mark
a document as DONT KNOW. Read as much of the document as is needed to make an informed
judgment. The time between which you are shown a document and you hit the submit button is
timed. So do not do anything else in this time. After you submit, A THANK YOU page is displayed.
You may take a break here before you proceed to the next document.

To modify the last annotation use the browsers BACK button
To begin annotating click here

Appendix D. End of Labeling Survey
Please take 2 minutes to fill out the following:

1. How easy was it to mark features?
(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) Remarks:

2. How easy was it to mark documents?
(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) Remarks:

3. For each of the following tasks please state your domain knowledge (only if you did relevance
assessments for them) on a scale of 1-5 (1=very little, 5=expert):

(a) Baseball versus Hockey. (b) Earnings versus All.
(c) Automobiles versus Motorcycles. (d) Hurricane Mitch versus all.
(e) Middle eastern crisis versus all.

4. Your Internet connection
(a) DSL/Cable (b) T1 LAN (c) Dial-up
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